【題目】如圖,已知正方形ABCD的邊長為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°, ②OC=OE, ③tan∠OCD =,④中,正確的有( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
∵正方形ABCD的邊長為4,∴BC=CD=4,∠B=∠DCF=90°.
∵AE=BF=1,∴BE=CF=4-1=3.
在△EBC和△FCD中,∵BC=CD,∠B=∠DCF,BE=CF,∴△EBC≌△FCD(SAS).
∴∠CFD=∠BEC.∴∠BCE+∠BEC=∠BCE+∠CFD=90°.
∴∠DOC=90°.故①正確.
如圖,連接DE
若OC=OE,∵DF⊥EC,∴CD=DE.
∵CD=AD<DE(矛盾),故②錯誤.
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC.
∴tan∠OCD=tan∠DFC=.故③正確.
∵△EBC≌△FCD,∴S△EBC=S△FCD.
∴S△EBC-S△FOC=S△FCD-S△FOC,即S△ODC=S四邊形BEOF.故④正確.故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是邊長為的正三角形內(nèi)的一點(diǎn),到三邊的距離分別為.若以為邊可以組成三角形,則應(yīng)滿足的條件為()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年4月23日是我國第一個“全民閱讀日”某校開展了“建設(shè)書香校園,捐贈有益圖書”活動.我們在參加活動的所有班級中,隨機(jī)抽取了一個班,已知這個班是八年級5班,全班共50名學(xué)生.現(xiàn)將該班捐贈圖書情況的統(tǒng)計結(jié)果,繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)求八年級5班平均每人捐贈了多少本書?
(3)若該校八年級共有800名學(xué)生,請你估算這個年級學(xué)生共可捐贈多少本書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD//CO.
(1)求證:△ADB∽△OBC;
(2)若AB=2,BC=,求AD的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠D=30°,AB<AD.
(1)在AD邊上求作一點(diǎn)P,使點(diǎn)P到邊AB,BC的距離相等;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)在(1)的條件下,連接BP,若AB=2,求△ABP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店專售一款電動牙刷,其成本為20元/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(元/支)之間存在如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱“新冠肺炎”)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻(xiàn)給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,分別與相切于點(diǎn)和點(diǎn),點(diǎn)為弧上一點(diǎn),連接并延長交于點(diǎn),為弧上的一點(diǎn),連接交于點(diǎn),連接,且.
(1)如圖1,求證:;
(2)如圖2,連接,若,求證:平分;
(3)如圖3,在(2)的條件下,連接交于點(diǎn),連接,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com