【題目】如圖,AB是圓O的直徑,BC是弦,ODBCE,交弧BCD,若BC8,ED2

1)求圓O的半徑.

2)求AC的長.

【答案】1O的半徑為5;(2AC6

【解析】

1)由ODBC,則BECEBC4,在RtOEB中,由勾股定理就可以得到關(guān)于半徑的方程,可以求出半徑;

2)求出OE,利用三角形的中位線性質(zhì)定理解決問題即可.

解:(1)∵ODBC,

BECEBC4

設(shè)O的半徑為R,則OEODDER2

RtOEB中,由勾股定理得:

OE2+BE2OB2,即(R22+42R2,

解得:R5,

O的半徑為5

2)∵OAOB,ECEB,

OE為△BAC的中位線

AC2OE,

OEODDE523,

AC2×36

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AD為直徑的AEB、交DEC,且B為弧AC中心.

1)判斷形狀,并說明理由.

2)連接BC,求證

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中ACAD

1)如圖1,若AB為邊在△ABC外作△ABE,ABAE,∠DAC=∠EAB60°,求∠BFC的度數(shù);

2)如圖2,∠ABCα,∠ACDβ,BC4,BD6

α30°,β60°,AB的長為   

若改變α、β的大小,且α+β90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABC的直角邊長為,點(diǎn)O為斜邊AB的中點(diǎn),點(diǎn)PAB上任意一點(diǎn),連接PC,以PC為直角邊作等腰RtPCD,連接BD.

(1)求證: ;

(2)請(qǐng)你判斷ACBD有什么位置關(guān)系?并說明理由.

(3)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),設(shè)AP=x,△PBD的面積為S,求Sx之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本

1當(dāng)銷售單價(jià)為70元時(shí),每天的銷售利潤是多少?

2求出每天的銷售利潤y與銷售單價(jià)x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍

3如果該企業(yè)每天的總成本不超過7000元,那么銷售單價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?每天的總成本=每件的成本×每天的銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈十七中學(xué)為了解九年級(jí)學(xué)生體能狀況,從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為AB、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息,回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學(xué)生?

2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)若九年級(jí)共有500名學(xué)生,請(qǐng)你估計(jì)九年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)某數(shù)學(xué)興趣小組想測(cè)量商丘電視臺(tái)電視塔的高度,如圖,該小組在商丘電視塔BC前一座樓房樓頂A處所觀測(cè)到電視塔最高點(diǎn)B的仰角為65°,電視塔最低點(diǎn)C的仰角為30°,樓頂A與電視塔的水平距離AD90米,求商丘電視塔BC的高度.(結(jié)果精確到1米,參考數(shù)據(jù)≈1.41,≈1.73,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABO的邊AB垂直于x軸,垂足為點(diǎn)B,反比例函數(shù)y(x0)的圖象經(jīng)過AO的中點(diǎn)C,交AB于點(diǎn)D,且AD3

(1)設(shè)點(diǎn)A的坐標(biāo)為(4,4)則點(diǎn)C的坐標(biāo)為   ;

(2)若點(diǎn)D的坐標(biāo)為(4,n)

求反比例函數(shù)y的表達(dá)式;

求經(jīng)過C,D兩點(diǎn)的直線所對(duì)應(yīng)的函數(shù)解析式;

(3)(2)的條件下,設(shè)點(diǎn)E是線段CD上的動(dòng)點(diǎn)(不與點(diǎn)C,D重合),過點(diǎn)E且平行y軸的直線l與反比例函數(shù)的圖象交于點(diǎn)F,求△OEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a≠0)的圖象如圖所示,則下列命題中正確的是( 。

A. a bc

B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限

C. mam+b+bam是任意實(shí)數(shù))

D. 3b+2c0

查看答案和解析>>

同步練習(xí)冊(cè)答案