【題目】如圖,中,.
(1)尺規(guī)作圖(保留作圖痕跡,不寫作法與證明):
①作的平分線交邊于點(diǎn);
②過點(diǎn)作于點(diǎn);
(2)在(1)所畫圖中,若,,則長為________________.
【答案】(1)①詳見解析;②詳見解析;(2)10.
【解析】
(1)①按角的平分線的作法步驟作圖即可;
②按垂線的作法步驟作圖即可;
(2)根據(jù)角平分線的性質(zhì)得到DE=CD.在△AED中利用勾股定理得到AE的長.設(shè)AB=x,則BE=AB-AE=x-4.證明Rt△BDC≌Rt△BDE,得到BC=DE=x-4.在Rt△ABC中,利用勾股定理列方程即可得到結(jié)論.
(1)①如圖,BD就是所要求作的圖形.
②如圖,DE就是所要求作的圖形.
(2)∵∠C=90°,DE⊥AB,BD平分∠ABC,
∴DE=CD=3.
∵AC=8,
∴AD=AC-DC=8-3=5,
∴AE==4.
設(shè)AB=x,則BE=AB-AE=x-4.
在Rt△BDC和Rt△BDE中,∵BD=BD,DC=DE,
∴Rt△BDC≌Rt△BDE,
∴BC=DE=x-4.
在Rt△ACB中,∵,
∴,解得:x=10.
∴AB=10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“元旦”期間小明去永輝超市購物,恰逢永輝超市“滿1400減99元”促銷活動,小明準(zhǔn)備提前購置一些年貨和,已知和的單價總和是100到200之間的整數(shù),小明粗略測算了一下發(fā)現(xiàn)自己所購年貨總價為1305元,不能達(dá)到超市的促銷活動金額. 于是小明又購買了 、各一件,這樣就能參加超市的促銷活動,最后剛好付款1305元. 小明經(jīng)仔細(xì)計算發(fā)現(xiàn)前面粗略測算時把 和的單價看反了,那么小明實際總共買了______件年貨.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Δ中,已知點(diǎn)為中點(diǎn),點(diǎn)在線段上以每秒的速度由點(diǎn)向點(diǎn)運(yùn)動,同時點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動。當(dāng)點(diǎn)的運(yùn)動速度為每秒____時,能夠在某一時刻使得Δ與Δ全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形的長為a厘米,寬為b厘米,其中a>b,如果將原長方形的長和寬各增加3厘米,得到的新長方形面積記為S1,如果將原長方形的長和寬分別減少2厘米,得到的新長方形面積記為S2.
(1)若a、b為正整數(shù),請說明:S1與S2的差一定是5的倍數(shù);
(2)如果S1=2S2,求將原長方形的長和寬分別減少7厘米后得到的新長方形面積;
(3)如果用一個面積為S1的長方形和兩個面積為S2的長方形恰好能沒有縫隙沒有重疊地拼成一個正方形,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李經(jīng)營一家水果店,某日到水果批發(fā)市場批發(fā)一種水果.經(jīng)了解,一次性批發(fā)這種水果不得少于,超過時,所有這種水果的批發(fā)單價均為元kg.圖中折線表示批發(fā)單價(元)與質(zhì)量的函數(shù)關(guān)系.
(1)求圖中線段所在直線的函數(shù)表達(dá)式;
(2)小李需要一次性批發(fā)這種水果,需要花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以四邊形ABCD的邊AB、AD為底邊分別作等腰三角形ABF和ADE.
(1)當(dāng)四邊形ABCD為正方形時(如圖①),以邊AB、AD為斜邊分別向外側(cè)作等腰直角三角形ABF和ADE,連接EB、FD,線段BE與DF的數(shù)量關(guān)系是:= ;
(2)當(dāng)四邊形ABCD為矩形時(如圖②),以邊AB、AD為斜邊分別向矩形內(nèi)側(cè)、外側(cè)作等腰直角三角形ABF和ADE,連接EF、BD,線段EF與BD的數(shù)量關(guān)系是:= ,請?zhí)羁詹⒄f明理由;
(3)當(dāng)四邊形ABCD為平行四邊形時,以邊AB、AD為底邊分別向平行四邊形內(nèi)側(cè)、外側(cè)作等腰三角形ABF和ADE,且△EAD與△FBA的頂角∠AED=∠AFB=,連接EF、BD,交點(diǎn)為G.請用表示出∠EGD,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請你根據(jù)這個規(guī)律寫出第9個數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小方與同學(xué)一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點(diǎn)C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進(jìn)10米到達(dá)點(diǎn)D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.
(1)求AD的長.
(2)求樹長AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com