【題目】已知和,點(diǎn)在軸上,若要使最小,則點(diǎn)的坐標(biāo)為______.
【答案】
【解析】
如圖,作點(diǎn)A關(guān)于x軸是對(duì)稱點(diǎn)A′,連接BA′,交x軸于點(diǎn)P,根據(jù)點(diǎn)A坐標(biāo)可得點(diǎn)A關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為A′(0,-2),根據(jù)軸對(duì)稱的性質(zhì)可得PA=PA′,即可得BA′是PA+PB的最小值,利用待定系數(shù)法可求出直線BA′的解析式,進(jìn)而可得點(diǎn)P坐標(biāo).
如圖,作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′,連接BA′,交x軸于點(diǎn)P,
∵點(diǎn)A(0,2),
∴點(diǎn)A′(0,-2),
∵點(diǎn)A與點(diǎn)A′關(guān)于x軸對(duì)稱,點(diǎn)P在x軸上,
∴PA=PA′,
∴PA+PB=PB+PA′=BA′,
∴BA′是PA+PB的最小值,
設(shè)直線BA′的解析式為y=kx+b,
∴,
解得:,
∴直線BA′的解析式為y=x-2,
當(dāng)y=0時(shí),x=2,
∴點(diǎn)P坐標(biāo)為(2,0).
故答案為(2,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,.
(1)尺規(guī)作圖(保留作圖痕跡,不寫作法與證明):
①作的平分線交邊于點(diǎn);
②過(guò)點(diǎn)作于點(diǎn);
(2)在(1)所畫圖中,若,,則長(zhǎng)為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,已知點(diǎn)A(﹣1,﹣1),點(diǎn)B在第二象限,OB=,拋物線經(jīng)過(guò)點(diǎn)A和B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的對(duì)稱軸;
(3)如果該拋物線的對(duì)稱軸分別和邊AO、BO的延長(zhǎng)線交于點(diǎn)C、D,設(shè)點(diǎn)E在直線AB上,當(dāng)△BOE和△BCD相似時(shí),直接寫出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過(guò)點(diǎn)A和點(diǎn)D.
(1)判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半徑;
②設(shè)⊙O與AB邊的另一個(gè)交點(diǎn)為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解某年級(jí)1200名學(xué)生每學(xué)期參加社會(huì)實(shí)踐活動(dòng)時(shí)間,隨機(jī)對(duì)該年級(jí)50名學(xué)生進(jìn)行了調(diào)查,結(jié)果如下表:
時(shí)間(天) | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
人 數(shù) | 1 | 2 | 4 | 5 | 7 | 11 | 8 | 6 | 4 | 2 |
(1)在這個(gè)統(tǒng)計(jì)中,眾數(shù)是 ,中位數(shù)是 ;
(2)補(bǔ)全下面的頻率分布表和頻率分布直方圖:
分組 | 頻數(shù) | 頻率 |
3.5~5.5 | 3 | 0.06 |
5.5~7.5> | 9 | 0.18 |
7.5~9.5 | 0.36 | |
9.5~11.5 | 14 | |
11.5~13.5 | 6 | 0.12 |
合 計(jì) | 50 | 1.00 |
(3)請(qǐng)你估算這所學(xué)校該年級(jí)的學(xué)生中,每學(xué)期參加社會(huì)實(shí)踐活動(dòng)時(shí)間不少于9天的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的平分線與的垂直平分線相交于點(diǎn),,,垂足分別為,,,,則的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)為線段上一點(diǎn),, ,過(guò)點(diǎn)作直線,,在線段上有一點(diǎn),使得,連接,若動(dòng)點(diǎn)從點(diǎn)開始以每秒個(gè)單位的速度按的路徑運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)出發(fā)的時(shí)間為秒.
(1)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),若,則的值為_________;
(2)求當(dāng)為何值時(shí),為等腰三角形;
(3)若點(diǎn)為內(nèi)部射線上一點(diǎn),當(dāng)為等腰直角三角形,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長(zhǎng)600km的普通公路,另一條是全長(zhǎng)480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車由高速公路從甲地到乙地所需的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B(3,3)在雙曲線 (x>0)上,點(diǎn)D在雙曲線 (x<0)上,點(diǎn)A和點(diǎn)C分別在x軸,y軸的正半軸上,且點(diǎn)A,B,C,D構(gòu)成的四邊形為正方形.
(1)求k的值;
(3)求點(diǎn)A的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com