【題目】已知,點為射線上一點,點的中點,且.當點在射線上運動時 ,則和的最小值為_______

【答案】

【解析】

作點D關于OA的對稱點D′,連接CD′交OA于點P′,連接DP,,根據(jù)軸對稱的性質得到PD=PD,此時DP+CP=CD′即為PC+PD的最小值,根據(jù)已知條件計算求出結果即可.

解:作點D關于OA的對稱點D′,連接CD′交OA于點P′,連接DP′,根據(jù)軸對稱的性質得到PD=PD,此時DP+CP=CD′即為PC+PD的最小值.

DD′與OA交于點E,

∵∠O=30°,OD=3,由對稱性可知∠DEO=90°,

∴∠ODE=60°,DE=OD=,

DD=2DE=3,DD=CD,

∴∠D=DCD=ODE=30°,∴∠EDP=D=30°,

∴∠ODP=ODE+EDP=90°,

∴在RtODP′中,∠O=30°,OD=3,∴DP=

CP=2DP=2

DP+CP=3

和的最小值為3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB3,AC5,ADBC邊上的中線,且AD2,延長AD到點E,使DEAD,連接CE

1)求證:△AEC是直角三角形.

2)求BC邊的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調查,根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,,邊、都在軸的正半軸上,點的坐標為,.反比例函數(shù)的圖象經過點,交邊于點.則的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店11月份購進甲、乙兩種水果共花費1700元,其中甲種水果8/千克,乙種水果18/千克.12月份,這兩種水果的進價上調為:甲種水果10/千克,乙種水果20/千克.

1)若該店12月份購進這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進甲、乙兩種水果分別是多少千克?

2)若12月份將這兩種水果進貨總量減少到120千克,設購進甲種水果a千克,需要支付的貨款為w元,求wa的函數(shù)關系式;

3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列分式方程解應用題:

“5G改變世界,5G創(chuàng)造未來20199月,全球首個5G上海虹橋火車站,完成了5G網(wǎng)絡深度覆蓋,旅客可享受到高速便捷的5G網(wǎng)絡服務.虹橋火車站中5G網(wǎng)絡峰值速率為4G網(wǎng)絡峰值速率的10.在峰值速率下傳輸7千兆數(shù)據(jù),5G網(wǎng)絡比4G網(wǎng)絡快630秒,求5G網(wǎng)絡的峰值速率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若一個三角形中,其中有一個內角是另外一個內角的一半,則這樣的三角形叫做半角三角形”. 例如:等腰直角三角形就是半角三角形”.在鈍角三角形中,,,過點的直線邊于點.點在直線上,且

1)若,點延長線上.

,點恰好為中點時,依據(jù)題意補全圖1.請寫出圖中的一個半角三角形_______;

如圖2,若,圖中是否存在半角三角形除外),若存在,請寫出圖中的半角三角形,并證明;若不存在,請說明理由;

2)如圖3,若,保持的度數(shù)與(1)中②的結論相同,請直接寫出, 滿足的數(shù)量關系:______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知等邊ABC中,DAC的中點,EBC延長線上的一點,且CE=CD,DMBC,垂足為M.

(1)求∠E的度數(shù).

(2)求證:MBE的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(14),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.Px軸上的一個動點.

(1)求此拋物線的解析式;

(2)PA+PB的值最小時,求點P的坐標.

查看答案和解析>>

同步練習冊答案