【題目】已知頂點為P的拋物線C1的解析式為y=a(x-3)2(a≠0),且經(jīng)過點(0,1).
(1)求a的值及拋物線C1的解析式;
(2)如圖,將拋物線C1向下平移h(h>0)個單位得到拋物線C2,過點K(0,m2)(m>0)作直線l平行于x軸,與兩拋物線從左到右分別相交于A,B,C,D四點,且A,C兩點關于y軸對稱.
①點G在拋物線C1上,當m為何值時,四邊形APCG為平行四邊形?
②若拋物線C1的對稱軸與直線l交于點E,與拋物線C2交于點F.試探究:在K點運動過程中,的值是否改變?若會,請說明理由;若不會,請求出這個值.
【答案】(1)y=(x-3)2(2)①當m=時,四邊形APCG是平行四邊形②
【解析】
(1)直接利用待定系數(shù)法求二次函數(shù)解析式得出即可;
(2)首先得出△GQK≌△POK(ASA),進而得出頂點G在拋物線C1上,得出2m2=(-3-3)2,進而得出答案;
(3)利用函數(shù)對稱性表示出A點坐標,再表示出KC,PF的長,進而得出其比值.
(1)∵拋物線C1過點(0,1),∴1=a(0-3)2,解得a=
∴拋物線C1的解析式為y=(x-3)2.
(2)①連接PG,∵點A,C關于y軸對稱,
∴點K為AC的中點.
若四邊形APCG是平行四邊形,則必有點K是PG的中點.
過點G作GQ⊥y軸于點Q,
可得△GQK≌△POK,
∴GQ=PO=3,KQ=OK=m2,OQ=2m2.
∴點G(-3,2m2).
∵頂點G在拋物線C1上,∴2m2=(-3-3)2,
解得m=±,又m>0,∴m=
∴當m=時,四邊形APCG是平行四邊形.
②不會.在拋物線y=(x-3)2中,令y=m2,
解得x=3±3m,又m>0,且點C在點B的右側(cè),
∴C(3+3m,m2),KC=3+3m.
∵點A,C關于y軸對稱,
∴A(-3-3m,m2).
∵拋物線C1向下平移h(h>0)個單位得到拋物線C2,∴拋物線C2的解析式為y=(x-3)2-h.
∴m2=(-3-3m-3)2-h,
解得h=4m+4,
∴PF=4+4m.
.
科目:初中數(shù)學 來源: 題型:
【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學生?
(2)求測試結(jié)果為C等級的學生數(shù),并補全條形圖;
(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《山西省新能源汽車產(chǎn)業(yè)2018年行動計劃》指出,2018年全省新能源汽車產(chǎn)能將達到30萬輛,按照“十三五”規(guī)劃,到2020年,全省新能源汽車產(chǎn)能將達到41萬輛,若設這兩年全省新能源汽車產(chǎn)能的平均增長率為,則根據(jù)題意可列出方程是()
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形OAA1的直角邊OA在x軸上,點A1在第一象限,且OA=1,以點A1為直角頂點,OA1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3…依此規(guī)律,則點A2018的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將兩張長為5,寬為1的矩形紙條交叉,讓兩個矩形對角線交點重合,且使重疊部分成為一個菱形.當兩張紙條垂直時,菱形周長的最小值是4,把一個矩形繞兩個矩形重合的對角線交點旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過程中,得出所有重疊部分為菱形的四邊形中,周長的最大值是( )
A. 8B. 10C. 10.4D. 12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】濟南某中學在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應的圓心角度數(shù) .
(3)請估計全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口圓的直徑EF長為6 cm,母線OE(OF)長為9cm.在母線OF上的點A處有一塊爆米花殘渣,且FA = 3cm.在母線OE上的點B處有一只螞蟻,且EB = 1cm.這只螞蟻從點B處沿圓錐表面爬行到A點,則爬行的最短距離為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=mx2﹣4mx+3m(m>0)與x軸交于A,B兩點(點B在點A右側(cè)).與y軸交點C,與直線l:y=x+1交于D、E兩點,
(1)當m=1時,連接BC,求∠OBC的度數(shù);
(2)在(1)的條件下,連接DB、EB,是否存在拋物線在第四象限上一點P,使得S△DBE=S△DPE?若存在,求出此時P點坐標及PB的長度;若不存在,請說明理由;
(3)若以DE為直徑的圓恰好與x軸相切,求此時m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為252m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com