【題目】如圖,A(﹣1,0)、B(2,﹣3)兩點在一次函數(shù)y1=﹣x+m與二次函數(shù)y2=ax2+bx﹣3的圖象上.
(1)求m的值和二次函數(shù)的解析式.
(2)請直接寫出使y1>y2時自變量x的取值范圍.
【答案】(1)y2=x2﹣2x﹣3;(2)當(dāng)y1>y2時,﹣1<x<2.
【解析】
(1)兩點帶入直線解析式中直接求出m的值,再根據(jù)交點坐標(biāo)求出二次函數(shù)的解析式(2)根據(jù)函數(shù)圖象,直接寫出使y1>y2時自變量x的取值范圍.
(1)由于A(﹣1,0)在一次函數(shù)y1=﹣x+m的圖象上,得:
﹣(﹣1)+m=0,即m=﹣1;
已知A(﹣1,0)、B(2,﹣3)在二次函數(shù)y2=ax2+bx﹣3的圖象上,則有:
,解得
∴二次函數(shù)的解析式為y2=x2﹣2x﹣3;
(2)由兩個函數(shù)的圖象知:當(dāng)y1>y2時,﹣1<x<2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖分別是兩根木棒及其影子的情形.
(1)哪個圖反映了太陽光下的情形?哪個圖反映了路燈下的情形?
(2)在太陽光下,已知小明的身高是1.8米,影長是1.2米,旗桿的影長是4米,求旗桿的高;
(3)請在圖中分別畫出表示第三根木棒的影長的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
材料1.若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=-,x1x2=.
材料2.已知實數(shù)m,n滿足m2-m-1=0,n2-n-1=0,且m≠n,求的值.
解:由題知m,n是方程x2-x-1=0的兩個不相等的實數(shù)根,
根據(jù)材料1得m+n=1,mn=-1,
∴.
解決問題:
(1)一元二次方程x2-4x-3=0的兩根為x1,x2,則x1+x2= ,x1x2= .
(2)已知實數(shù)m,n滿足2m2-2m-1=0,2n2-2n-1=0,且m≠n,求m2n+mn2的值.
(3)已知實數(shù)p,q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為2,∠AOB=120°.
(1)點O到弦AB的距離為 ;.
(2)若點P為優(yōu)弧AB上一動點(點P不與A、B重合),設(shè)∠ABP=α,將△ABP沿BP折疊,得到A點的對稱點為A′;
①若∠α=30°,試判斷點A′與⊙O的位置關(guān)系;
②若BA′與⊙O相切于B點,求BP的長;
③若線段BA′與優(yōu)弧APB只有一個公共點,直接寫出α的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) y =kx2 +(k +1)x +1(k 為實數(shù)),
(1)當(dāng) k=3 時,求此函數(shù)圖象與 x 軸的交點坐標(biāo);
(2)判斷此函數(shù)與 x 軸的交點個數(shù),并說明理由;
(3)當(dāng)此函數(shù)圖象為拋物線,且頂點在 x 軸下方,頂點到 y 軸的距離為 2,求 k 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣4ax+3a.
(Ⅰ)求該二次函數(shù)的對稱軸;
(Ⅱ)若該二次函數(shù)的圖象開口向下,當(dāng)1≤x≤4時,y的最大值是2,且當(dāng)1≤x≤4時,函數(shù)圖象的最高點為點P,最低點為點Q,求△OPQ的面積;
(Ⅲ)若對于該拋物線上的兩點P(x1,y1),Q(x2,y2),當(dāng)t≤x1≤t+1,x2≥5時,均滿足y1≥y2,請結(jié)合圖象,直接寫出t的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2,⊙O與l1和l2分別相切于點A和點B.點M和點N分別是l1和l2上的動點,MN沿l1和l2平移.⊙O的半徑為1,∠1=60°.有下列結(jié)論:①MN=;②若MN與⊙O相切,則AM=;③若∠MON=90°,則MN與⊙O相切;④l1和l2的距離為2,其中正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的直角邊BC在x軸正半軸上,斜邊AC邊上的中線BD反向延長線交y軸負半軸于E,雙曲線y=(x>0)的圖象經(jīng)過點A,若△BEC的面積為6,則k等于( 。
A. 3 B. 6 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,連結(jié)BD,∠BAD=105°,∠DBC=75°.若⊙O的半徑為3,則弧BC的長是( )
A. B. π C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com