正方形ABCD中,點O是對角線AC的中點,P是對角線AC上一動點,過點P作PF⊥CD于點F.如圖1,當(dāng)點P與點O重合時,顯然有DF=CF.
(1)如圖2,若點P在線段AO上(不與點A、O重合),PE⊥PB且PE交CD于點E.
①求證:DF=EF;
②寫出線段PC、PA、CE之間的一個等量關(guān)系,并證明你的結(jié)論;
(2)若點P在線段OC上(不與點O、C重合),PE⊥PB且PE交直線CD于點E.請完成圖3并判斷(1)中的結(jié)論①、②是否分別成立?若不成立,寫出相應(yīng)的結(jié)論.(所寫結(jié)論均不必證明)
(1)如圖2,延長FP交AB于點Q,
①∵AC是正方形ABCD對角線,
∴∠QAP=∠APQ=45°,
∴AQ=PQ,
∵AB=QF,
∴BQ=PF,
∵PE⊥PB,
∴∠QPB+∠FPE=90°,
∵∠QBP+∠QPB=90°,
∴∠QBP=∠FPE,
∵∠BQP=∠PFE=90°,
∴△BQP≌△PFE,
∴QP=EF,
∵AQ=DF,
∴DF=EF;
②如圖2,過點P作PG⊥AD.
∵PF⊥CD,∠PCF=∠PAG=45°,
∴△PCF和△PAG均為等腰直角三角形,
∵四邊形DFPG為矩形,
∴PA=
2
PG,PC=
2
CF,
∵PG=DF,DF=EF,
∴PA=
2
EF,
∴PC=
2
CF=
2
(CE+EF)=
2
CE+
2
EF=
2
CE+PA,
即PC、PA、CE滿足關(guān)系為:PC=
2
CE+PA;

(2)結(jié)論①仍成立;結(jié)論②不成立,此時②中三條線段的數(shù)量關(guān)系是PA-PC=
2
CE.
如圖3:
①∵PB⊥PE,BC⊥CE,
∴B、P、C、E四點共圓,
∴∠PEC=∠PBC,
在△PBC和△PDC中有:BC=DC(已知),∠PCB=∠PCD=45°(已證),PC邊公共邊,
∴△PBC≌△PDC(SAS),
∴∠PBC=∠PDC,
∴∠PEC=∠PDC,
∵PF⊥DE,
∴DF=EF;
②同理:PA=
2
PG=
2
DF=
2
EF,PC=
2
CF,
∴PA=
2
EF=
2
(CE+CF)=
2
CE+
2
CF=
2
CE+PC
即PC、PA、CE滿足關(guān)系為:PA-PC=
2
CE.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,設(shè)F為正方形ABCD上一點,CE⊥CF交AB的延長線于E,若正方形ABCD的面積為64,△CEF的面積為50,則△CBE的面積為(  )
A.20B.24C.25D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一個直角三角形的直角頂點P在正方形ABCD的對角線AC所在的直線上滑動,并使得一條直角邊始終經(jīng)過B點.
(1)如圖1,當(dāng)直角三角形的另一條直角邊和邊CD交于Q點,
PB
PQ
=______;
(2)如圖2,當(dāng)另一條直角邊和邊CD的延長線相交于Q點時,
PB
PQ
=______;
(3)如圖3或圖4,當(dāng)直角頂點P運動到AC或CA的延長線上時,請你在圖3或圖4中任選一種情形,求
PB
PQ
的值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知P是正方形ABCD對角線BD上一點,且BP=BC,則∠ACP度數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,以正方形ABCD的一邊CD為邊,向形外作等邊三角形CDE,連接AC、AE,則下列結(jié)論錯誤的是(  )
A.∠ACE=105°
B.∠ADE=150°
C.∠DEA=15°
D.△EFC的面積大于△ACF的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,阿倉用一張邊長為27.6公分的正方形厚紙板,剪下邊長皆為3.8公分的四個正方形,形成一個有眼、鼻、口的面具.求此面具的面積為多少平方公分( 。
A.552B.566.44C.656.88D.704

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,小正方形邊長為1,連接小正方形的三個頂點,可得△ABC,則AC邊上的高是( 。
A.
3
2
2
B.
3
10
5
C.
3
5
5
D.
4
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,正方形ABCD的邊長為1,動點E、F分別在邊AB、對角線BD上(點E與點A、B都不重合)且AE=
2
DF
(1)設(shè)DF=x,CF2=y,求:y與x的函數(shù)關(guān)系式,并寫出定義域;
(2)求證:FC=FE;
(3)是否存在以線段AE、DF、CF的長為邊的直角三角形?若存在,請求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的面積為1,M是AB的中點,連接AC、DM,則圖中陰影部分的面積是______.

查看答案和解析>>

同步練習(xí)冊答案