【題目】陽光中學(xué)組織學(xué)生開展社會實踐活動,調(diào)查某社區(qū)居民對消防知識的了解程度(A:特別熟悉,B:有所了解,C:不知道),在該社區(qū)隨機抽取了100名居民進行問卷調(diào)查,將調(diào)查結(jié)果制成如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖解答下列問題:
(1)若該社區(qū)有居民900人,試估計對消防知識“特別熟悉”的居民人數(shù);
(2)該社區(qū)的管理人員有男、女個2名,若從中選2名參加消防知識培訓(xùn),試用列表或畫樹狀圖的方法,求恰好選中一男一女的概率.
【答案】(1)對消防知識“特別熟悉”的居民人數(shù)為225
(2)恰好選中一男一女的概率為.
【解析】
試題(1)先求出樣本中對消防知識“特別熟悉”的居民所占的百分比,然后再乘以總數(shù)即可;
(2)用A1、A2表示兩個男性管理人員,B1,B2表示兩個女性管理人員,列出表格或樹狀圖,再根據(jù)概率公式求解.
試題解析:(1)在調(diào)查的居民中,對消防知識“特別熟悉”的居民所占的百分比為:×100%=25%,
該社區(qū)對消防知識“特別熟悉”的居民人數(shù)估計為900×25%=225;
(2)用A1、A2表示兩個男性管理人員,B1,B2表示兩個女性管理人員,列表或樹狀圖如下:
故恰好選中一男一女的概率為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=30°,∠ACB=90°,AB=10,D為AC上點.將BD繞點B順時針旋轉(zhuǎn)60°得到BE,連接CE.
(1)證明:∠ABD=∠CBE;
(2)連接ED,若ED=2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標(biāo)是______,求出你所選方案中的拋物線的表達式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC∽△A′B′C′,AB=4 cm,A′B′=3 cm,AD,A′D′分別為△ABC與△A′B′C′的中線,下列結(jié)論中:①AD∶A′D′=4∶3;②△ABD∽△A′B′D′;③△ABD∽△A′B′C′;④△ABC與△A′B′C′對應(yīng)邊上的高之比為4∶3.其中結(jié)論正確的序號是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點D、E分別在△ABC中的邊AB和AC上,那么不能判定DE∥BC的比例式是( 。
A. AD:DB=AE:EC B. DE:BC=AD:AB
C. BD:AB=CE:AC D. AB:AC=AD:AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥BC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.
(1)如圖1,求證:∠ANE=∠DCE;
(2)如圖2,當(dāng)點N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長;
(3)連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是弧AB所對弦AB上一動點,過點P作PC⊥AB交AB于點P,作射線AC交弧AB于點D.已知AB=6cm,PC=1cm,設(shè)A,P兩點間的距離為xcm,A,D兩點間的距離為ycm.(當(dāng)點P與點A重合時,y的值為0)
小平根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小平的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y與x的幾組對應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 4.24 | 5.37 | m | 5.82 | 5.88 | 5.92 |
經(jīng)測量m的值是 (保留一位小數(shù)).
(2)在同一平面直角坐標(biāo)系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y),并畫出函數(shù)y的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)∠PAC=30°,AD的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面內(nèi)任意一個角的“夾線圓”,給出如下定義:如果一個圓與這個角的兩邊都相切,則稱這個圓為這個角的“夾線圓”.例如:在平面直角坐標(biāo)系xOy中,以點(1,1)為圓心,1為半徑的圓是x軸與y軸所構(gòu)成的直角的“夾線圓”.
(1)下列各點中,可以作為x軸與y軸所構(gòu)成的直角的“夾線圓”的圓心的點是哪些;
A(2,2),B(3,1),C(-1,0),D(1,-1)
(2)若⊙P為y軸和直線 l:所構(gòu)成的銳角的“夾線圓”,且⊙P的半徑為1,求點P的坐標(biāo).
(3)若 ⊙Q為x軸和直線所構(gòu)成的銳角的“夾線圓”,且⊙Q的半徑,直接寫出點Q橫坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com