【題目】如圖,M為線段AB的中點(diǎn),AEBD交于點(diǎn)C,,且DMACF,MEBC于點(diǎn)G

1)寫出圖中相似三角形,并證明其中的一對;

2)請連結(jié)FG,如果,,求BGFG的長.

【答案】1)△AME∽△MFE,△BMD∽△MGD,△AMF∽△BGM,證明見解析;(2BG,FG

【解析】

1)根據(jù)已知條件,∠DME=∠A=∠B,結(jié)合圖形上的公共角,即可推出△DMG∽△DBM,△EMF∽△EAMAMF∽△BGM;

2)根據(jù)相似三角形的性質(zhì),推出BG的長度,依據(jù)銳角三角函數(shù)推出AC的長度,即可求出CG、CF的長度,繼而推出FG的長度.

1)△AME∽△MFE,△BMD∽△MGD,△AMF∽△BGM,

∵∠AMD=∠B+∠D,∠BGM=∠DMG+∠D

又∠B=∠A=∠DME

∴∠AMF=∠BGM,

∴△AMF∽△BGM

2)當(dāng)45°時,可得ACBCACBC

MAB的中點(diǎn),

AMBM2

∵∠DME=∠A=∠B,∠FMB是△AFM的外角,

∴∠FMB=∠A+∠AFM=∠DME+∠GMB,

∴∠AFM=∠GMB

∴△AMF∽△BGM,

BGACBC4cos45°=4,

CG4CF431,

FG

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB120°,∠DCB60°,CBCDAC8,則四邊形ABCD的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)EF分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)GCE的延長線交DA的延長線于點(diǎn)H,連接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AGAH什么關(guān)系?請說明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將繞頂點(diǎn)A順時針旋轉(zhuǎn)后得到,且的中點(diǎn),相交于,若,則線段的長度為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)yaxbyax2bx的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的內(nèi)切圓⊙OBCCA,AB分別相切于點(diǎn)DEF.且AB5,AC12BC13,則⊙O的半徑是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:點(diǎn)AB、CD為⊙O上的四等分點(diǎn),動點(diǎn)P從圓心O出發(fā),沿OCDO的路線做勻速運(yùn)動.設(shè)運(yùn)動的時間為t秒,∠APB的度數(shù)為y.則下列圖象中表示yt之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵ā 。?/span>

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點(diǎn)D(5,3)在邊AB上,以C為中心,把CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)D的對應(yīng)點(diǎn)D′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線x軸交于A-10),B30)兩點(diǎn),與y軸交于點(diǎn)C

(1)求該拋物線的解析式;

(2)如圖①,若點(diǎn)D是拋物線上一動點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m0m3),連接CDBD,BCAC,當(dāng)△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點(diǎn)N為拋物線對稱軸上一點(diǎn),請?jiān)趫D②中探究拋物線上是否存在點(diǎn)M,使得以B,C,MN為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案