【題目】如圖①,AD為等腰直角△ABC的高,點(diǎn)A和點(diǎn)C分別在正方形DEFG的邊DG和DE上,連接BG,AE.
(1)求證:BG=AE;
(2)將正方形DEFG繞點(diǎn)D旋轉(zhuǎn),當(dāng)線(xiàn)段EG經(jīng)過(guò)點(diǎn)A時(shí),(如圖②所示)
①求證:BG⊥GE;
②設(shè)DG與AB交于點(diǎn)M,若AG:AE=3:4,求 的值.
【答案】
(1)
證明:如圖①,
∵AD為等腰直角△ABC的高,
∴AD=BD,
∵四邊形DEFG為正方形,
∴∠GDE=90°,DG=DE,
在△BDG和△ADE中
,
∴△BDG≌△ADE,
∴BG=AE
(2)
①證明:如圖②,
∵四邊形DEFG為正方形,
∴△DEG為等腰直角三角形,
∴∠1=∠2=45°,
由(1)得△BDG≌△ADE,
∴∠3=∠2=45°,
∴∠1+∠3=45°+45°=90°,即∠BGE=90°,
∴BG⊥GE;
②解:設(shè)AG=3x,則AE=4x,即GE=7x,
∴DG= GE= x,
∵△BDG≌△ADE,
∴BG=AE=4x,
在Rt△BGA中,AB= = =5x,
∵△ABD為等腰直角三角形,
∴∠4=45°,BD= AB= x,
∴∠3=∠4,
而∠BDM=∠GDB,
∴△DBM∽△DGB,
∴BD:DG=DM:BD,即 x: x=DM: x,解得DM= x,
∴GM=DG﹣DM= x﹣ x= x,
∴ = = .
【解析】(1.)如圖①,根據(jù)等腰直角三角形的性質(zhì)得AD=BD,再根據(jù)正方形的性質(zhì)得∠GDE=90°,DG=DE,則可根據(jù)“SAS“判斷△BDG≌△ADE,于是得到BG=AE;
(2.)①如圖②,先判斷△DEG為等腰直角三角形得到∠1=∠2=45°,再由△BDG≌△ADE得到∠3=∠2=45°,則可得∠BGE=90°,所以BG⊥GE;
②設(shè)AG=3x,則AE=4x,即GE=7x,利用等腰直角三角形的性質(zhì)得DG= GE= x,由(1)的結(jié)論得BG=AE=4x,則根據(jù)勾股定理得AB=5x,接著由△ABD為等腰直角三角形得到∠4=45°,BD= AB= x,然后證明△DBM∽△DGB,則利用相似比可計(jì)算出DM= x,所以GM= x,于是可計(jì)算出 的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG.
(1)求證:四邊形DEGF是平行四邊形;
(2)當(dāng)點(diǎn)G是BC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果基地計(jì)劃裝運(yùn)甲、乙、丙三種水果到外地銷(xiāo)售(每輛汽車(chē)規(guī)定滿(mǎn)載,并且只裝一種水果).如表為裝運(yùn)甲、乙、丙三種水果的重量及利潤(rùn).
甲 | 乙 | 丙 | |
每輛汽車(chē)能裝的數(shù)量(噸) | 4 | 2 | 3 |
每噸水果可獲利潤(rùn)(千元) | 5 | 7 | 4 |
(1)用8輛汽車(chē)裝運(yùn)乙、丙兩種水果共22噸到A地銷(xiāo)售,問(wèn)裝運(yùn)乙、丙兩種水果的汽車(chē)各多少輛?
(2)水果基地計(jì)劃用20輛汽車(chē)裝運(yùn)甲、乙、丙三種水果共72噸到B地銷(xiāo)售(每種水果不少于一車(chē)),假設(shè)裝運(yùn)甲水果的汽車(chē)為m輛,則裝運(yùn)乙、丙兩種水果的汽車(chē)各多少輛?(結(jié)果用m表示)
(3)在(2)問(wèn)的基礎(chǔ)上,如何安排裝運(yùn)可使水果基地獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)(網(wǎng)格線(xiàn)的交點(diǎn))上.
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系,使點(diǎn)A坐標(biāo)為(1,3)點(diǎn)B坐標(biāo)為(2,1);
(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A'B'C',并寫(xiě)出點(diǎn)C'的坐標(biāo);
(3)判斷△ABC的形狀.并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=﹣2x+2的圖象與x軸、y軸分別交于點(diǎn)A,B.在y軸左側(cè)有一點(diǎn)P(﹣1,a).
(1)如圖1,以線(xiàn)段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,且∠BAC=90°,求點(diǎn)C的坐標(biāo);
(2)當(dāng)a=時(shí),求△ABP的面積;
(3)當(dāng)a=﹣2時(shí),點(diǎn)Q是直線(xiàn)y=﹣2x+2上一點(diǎn),且△POQ的面積為5,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張老師要從班級(jí)里數(shù)學(xué)成績(jī)較優(yōu)秀的甲、乙兩位學(xué)生中選拔一人參加“全國(guó)初中數(shù)學(xué)聯(lián)賽” 為此,他對(duì)兩位同學(xué)進(jìn)行了輔導(dǎo),并在輔導(dǎo)期間測(cè)驗(yàn)了10次,測(cè)驗(yàn)成績(jī)?nèi)缦卤恚?/span>
第1次 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
甲 | 68 | 80 | 78 | 79 | 78 | 84 | 81 | 83 | 77 | 92 |
乙 | 86 | 80 | 75 | 83 | 79 | 80 | 85 | 80 | 77 | 75 |
利用表中數(shù)據(jù),解答下列問(wèn)題:
填空完成下表:
平均成績(jī) | 中位數(shù) | 眾數(shù) | |
甲 | 80 | ||
乙 | 80 | 80 |
張老師從測(cè)驗(yàn)成績(jī)表中,求得甲的方差,請(qǐng)你計(jì)算乙10次測(cè)驗(yàn)成績(jī)的方差.
請(qǐng)你根據(jù)上面的信息,運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí),幫張老師選拔出參加“全國(guó)數(shù)學(xué)聯(lián)賽”的人選,并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),現(xiàn)將△PCD沿直線(xiàn)PD折疊,使點(diǎn)C落到點(diǎn)C′處;作∠BPC′的角平分線(xiàn)交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年11月13日巴基斯坦瓜達(dá)爾港正式開(kāi)港,此港成為我國(guó)“一帶一路”必展戰(zhàn)略上的一顆璀璨的明星,某大型遠(yuǎn)洋運(yùn)輸集團(tuán)有三種型號(hào)的遠(yuǎn)洋貨輪,每種型號(hào)的貨輪載重量和盈利情況如下表所示:
甲 | 乙 | 丙 | |
平均貨輪載重的噸數(shù)(萬(wàn)噸) | 10 | 5 | 7.5 |
平均每噸貨物可獲例如(百元) | 5 | 3.6 | 4 |
(1)若用乙、丙兩種型號(hào)的貨輪共8艘,將55萬(wàn)噸的貨物運(yùn)送到瓜達(dá)爾港,問(wèn)乙、丙兩種型號(hào)的貨輪各多少艘?
(2)集團(tuán)計(jì)劃未來(lái)用三種型號(hào)的貨輪共20艘裝運(yùn)180萬(wàn)噸的貨物到國(guó)內(nèi),并且乙、丙兩種型號(hào)的貨輪數(shù)量之和不超過(guò)甲型貨輪的數(shù)量,如果設(shè)丙型貨輪有m艘,則甲型貨輪有艘,乙型貨輪有艘(用含有m的式子表示),那么如何安排裝運(yùn),可使集團(tuán)獲得最大利潤(rùn)?最大利潤(rùn)的多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家超市同價(jià)銷(xiāo)售同一款可拆分式驅(qū)蚊器,1套驅(qū)蚊器由1個(gè)加熱器和1瓶電熱蚊香液組成.電熱蚊香液作為易耗品可單獨(dú)購(gòu)買(mǎi),1瓶電熱蚊香液的售價(jià)是1套驅(qū)蚊器的.已知電熱蚊香液的利潤(rùn)率為20%,整套驅(qū)蚊器的利潤(rùn)率為25%.張阿姨從甲超市買(mǎi)了1套這樣的驅(qū)蚊器,并另外買(mǎi)了4瓶電熱蚊香液,超市從中共獲利10元.
(1)求1套驅(qū)蚊器和1瓶電熱蚊香液的售價(jià);
(2)為了促進(jìn)該款驅(qū)蚊器的銷(xiāo)售,甲超市打8.5折銷(xiāo)售,而乙超市采用的銷(xiāo)售方法是顧客每買(mǎi)1套驅(qū)蚊器送1瓶電熱蚊香液.在這段促銷(xiāo)期間,甲超市銷(xiāo)售2000套驅(qū)蚊器,而乙超市在驅(qū)蚊器銷(xiāo)售上獲得的利潤(rùn)不低于甲超市的1.2倍.問(wèn)乙超市至少銷(xiāo)售多少套驅(qū)蚊器?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com