【題目】一個六邊形ABCDEF的六個內角都是120°,連續(xù)四邊的長依次為AB=1,BC=3,CD=3,DE=2,那么這個六邊形ABCDEF的周長是( )
A.12B.13C.14D.15
【答案】D
【解析】
凸六邊形ABCDEF,并不是一規(guī)則的六邊形,但六個角都是120°,所以通過適當?shù)南蛲庾餮娱L線,可得到等邊三角形,進而求解.
解:如圖,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、P.
∵六邊形ABCDEF的六個角都是120°,
∴六邊形ABCDEF的每一個外角的度數(shù)都是60°.
∴△APF、△BGC、△DHE、△GHP都是等邊三角形.
∴GC=BC=3,DH=DE=2.
∴GH=3+3+2=8,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4,EF=PH﹣PF﹣EH=8﹣4﹣2=2.
∴六邊形的周長為1+3+3+2+4+2=15.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明為了測量大樓AB的高度,他從點C出發(fā),沿著斜坡面CD走52米到點D處,測得大樓頂部點A的仰角為37°,大樓底部點B的俯角為45°,已知斜坡CD的坡度為i=1:2.4.大樓AB的高度約為( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. 32米B. 35米C. 36米D. 40米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于的方程有唯一實數(shù)解,且反比例函數(shù)的圖象在每個象限內隨的增大而增大,那么反比例函數(shù)的關系式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結論:
①ac<0;
②當x>1時,y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的結論是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,給出下列說法:
①;②方程的根為,;③;④當時,隨值的增大而增大;⑤當時,.其中,正確的說法有________(請寫出所有正確說法的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;
(3)四邊形AA2C2C的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5 小時內其血液中酒精含量 y(毫克/百毫升) 與時間 x(時)的關系可近似地用二次函數(shù) y=﹣200x2+400x 刻畫;1.5 小時后(包括 1.5 小時)y 與 x 可近似地用反比例函數(shù) 刻畫(如圖所示)
(1)根據(jù)上述數(shù)學模型計算:喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
(2)按國家規(guī)定,車輛駕駛人員血液中的酒精含量大于或等于 20 毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學模型,假設某駕駛員晚上 20:00 在家喝完半斤低度白酒,第二天早上 7:00 能否駕車去上班?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,為射線上一定點,點關于射線的對稱點為點為射線上一動點,連接,滿足為鈍角,以點為中心,將線段逆時針旋轉至線段,滿足點在射線的反向延長線上.
(1)依題意補全圖形;
(2)當點在運動過程中,旋轉角是否發(fā)生變化?若不變化,請求出的值,若變化,請說明理由;
(3)從點向射線作垂線,與射線的反向延長線交于點,探究線段和的數(shù)量關系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一批成本為每件 30 元的商品,經調查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數(shù)關系,其圖象如圖所示.
(1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數(shù)關系式;
(2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?
(3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應為多少件?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com