【題目】如圖,△ABC中,ABBC,BEAC于點(diǎn)E,ADBC于點(diǎn)D,∠BAD=45°,ADBE交于點(diǎn)F

1)求證:△ADC≌△BDF

2)求證:BF2AE

【答案】(1)見解析;(2)見解析

【解析】

(1)先判定出ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出CAD=CBE,然后利用“角邊角”證明ADC和BDF全等;(2)根據(jù)全等三角形對(duì)應(yīng)邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=2AE,從而得證.

證明:(1)ADBC,BAD=45°,

∴△ABD是等腰直角三角形,

AD=BD,

BEAC,ADBC,

∴∠CAD+ACD=90°,

CBE+ACD=90°,

∴∠CAD=CBE,

ADC和BDF中,

∴△ADC≌△BDF(ASA);

(2)∵△ADC≌△BDF,

BF=AC,

AB=BC,BEAC,

AC=2AE,

BF=2AE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將三角形紙片ABC沿AD折疊,使點(diǎn)C落在BD邊上的點(diǎn)E處.若BC=10,BE=2,則AB2AC2的值為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由相同邊長(zhǎng)的小正方形組成的網(wǎng)格圖形,A、BC都在格點(diǎn)上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑)

1)過點(diǎn)CAB的平行線;

2)過點(diǎn)BAC的垂線,垂足為點(diǎn)G;過點(diǎn)BAB的垂線,交AC的延長(zhǎng)線于H

3)點(diǎn)BAC的距離是線段 的長(zhǎng)度,線段AB的長(zhǎng)度是點(diǎn) 到直線 的距離.

4)線段BG、AB的大小關(guān)系為:BG AB(填“=”),理由是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱軸是直線x=1,
①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2
上述判斷中,正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣10),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到對(duì)應(yīng)點(diǎn)CD,連接ACBD

1)求出點(diǎn)CD的坐標(biāo);

2)設(shè)y軸上一點(diǎn)P0,m),m為整數(shù),使關(guān)于x,y的二元一次方程組有正整數(shù)解,求點(diǎn)P的坐標(biāo);

3)在(2)的條件下,若Q點(diǎn)在線段CD上,橫坐標(biāo)為nPBQ的面積SPBQ的值不小于0.6且不大于4,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,D為AB的中點(diǎn),E、F分別在AC、BC上,且DE⊥DF.

求證:AE2+BF2=EF2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2008年北京奧運(yùn)會(huì)后,同學(xué)們參與體育鍛煉的熱情高漲.為了解他們平均每周的鍛煉時(shí)間,小明同學(xué)在校內(nèi)隨機(jī)調(diào)查了50名同學(xué),統(tǒng)計(jì)并制作了如下的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.根據(jù)上述信息解答下列問題:

(1)m= , n=;
(2)在扇形統(tǒng)計(jì)圖中,D組所占圓心角的度數(shù)為度;
(3)全校共有3000名學(xué)生,估計(jì)該校平均每周體育鍛煉時(shí)間不少于6小時(shí)的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

求證:AF平分∠BAC.

【答案】證明見解析.

【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證ABF≌△ACF,從而證出AF平分∠BAC

試題解析:證明:∵AB=AC(已知),

∴∠ABC=ACB(等邊對(duì)等角).

BDCE分別是高,

BDAC,CEAB(高的定義).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代換).

FB=FC(等角對(duì)等邊)

ABFACF中,

,

ABFACF(SSS),

∴∠BAF=CAF(全等三角形對(duì)應(yīng)角相等),

AF平分∠BAC.

型】解答
結(jié)束】
23

【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD△ABC的角平分線,DE⊥AB,垂足為E

1)求證:CD=BE;

2)已知CD=2,求AC的長(zhǎng);

3)求證:AB=AC+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算:(﹣2)1﹣(2017﹣π)0+sin30°;
(2)化簡(jiǎn):

查看答案和解析>>

同步練習(xí)冊(cè)答案