【題目】在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:
分 組 | 頻數(shù) | 頻率 |
第一組(0≤x<15) | 3 | 0.15 |
第二組(15≤x<30) | 6 | a |
第三組(30≤x<45) | 7 | 0.35 |
第四組(45≤x<60) | b | 0.20 |
(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;
(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?
(3)已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?
【答案】 0.3 4
【解析】試題分析:(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;
(2)利用用樣本估計總體的知識求解即可求得答案;
(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.
試題解析:解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;
∵總人數(shù)為:3÷0.15=20(人),∴b=20×0.20=4(人);
故答案為:0.3,4;
補全統(tǒng)計圖得:
(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);
(3)畫樹狀圖得:
∵共有12種等可能的結果,所選兩人正好都是甲班學生的有3種情況,∴所選兩人正好都是甲班學生的概率是: =.
科目:初中數(shù)學 來源: 題型:
【題目】如果三角形三邊的長a、b、c滿足,那么我們就把這樣的三角形叫做“勻稱三角形”,如:三邊長分別為1,1,1或3,5,7,…的三角形都是“勻稱三角形”.
(1)如圖1,已知兩條線段的長分別為a、c(a<c).用直尺和圓規(guī)作一個最短邊、最長邊的長分別為a、c的“勻稱三角形”(不寫作法,保留作圖痕跡);
(2)如圖2,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作⊙O的切線交AB延長線于點E,交AC于點F,若,判斷△AEF是否為“勻稱三角形”?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠為了擴大生產,決定購買6臺機器用于生產零件,現(xiàn)有甲、乙兩種機器可供選擇.其中甲型機器每日生產零件106個,乙型機器每日生產零件60個,經調査,購買3臺甲型機器和2臺乙型機器共需要31萬元,購買一臺甲型機器比購買一臺乙型機器多2萬元.
(1)求甲、乙兩種機器每臺各多少萬元?
(2)如果工廠購買機器的預算資金不超過34萬元,那么你認為該工廠有哪幾種購買方案?
(3)在(2)的條件下,如果要求該工廠購進的6臺機器的日產量能力不能低于400個,那么為了節(jié)約資金.應該選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形是菱形,,反比例函數(shù)的圖象經過點,若將菱形向下平移2個單位,點恰好落在反比例函數(shù)的圖象上,則反比例函數(shù)的表達式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=-1.且過點(,0),有下列結論:
①abc>0;②a-2b+4c=0;③25a-10b+4c=0;④3b+2c>0;⑤a-bm≥(am-b);其中所有正確的結論有( )個.
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016湖南省益陽市)如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點,EF為△ACD的中位線,四邊形EFGH為△ACD的內接矩形(矩形的四個頂點均在△ACD的邊上).
(1)計算矩形EFGH的面積;
(2)將矩形EFGH沿AB向右平移,F落在BC上時停止移動.在平移過程中,當矩形與△CBD重疊部分的面積為時,求矩形平移的距離;
(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形E1F1G1H1,將矩形E1F1G1H1繞G1點按順時針方向旋轉,當H1落在CD上時停止轉動,旋轉后的矩形記為矩形E2F2G1H2,設旋轉角為α,求cosα的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+bx+c的對稱軸為直線x=1,拋物線與x軸交于A、B兩點(點A在點B的左側),且AB=4,又P是拋物線上位于第一象限的點,直線AP與y軸交于點D,與對稱軸交于點E,設點P的橫坐標為t.
(1)求點A的坐標和拋物線的表達式;
(2)當AE:EP=1:2時,求點E的坐標;
(3)記拋物線的頂點為M,與y軸的交點為C,當四邊形CDEM是等腰梯形時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com