【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點(diǎn)E,F(xiàn),與雙曲線y=﹣ (x<0)交于點(diǎn)P(﹣1,n),且F是PE的中點(diǎn),直線x=a與l交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),PA=PB,則a= .
【答案】﹣2
【解析】解:∵雙曲線y=﹣ (x<0)經(jīng)過點(diǎn)P(﹣1,n),
∴n=﹣ =9,
∴P(﹣1,9),
∵F是PE的中點(diǎn),
∴OF= ×9=4.5,
∴F(0,4.5),
設(shè)直線l的解析式為y=kx+b,
∴ ,解得 ,
∴直線l的解析式為y=﹣4.5x+4.5;
過P作PD⊥AB,垂足為點(diǎn)D,
∵PA=PB,
∴點(diǎn)D為AB的中點(diǎn),
又由題意知A點(diǎn)的縱坐標(biāo)為﹣4.5a+4.5,B點(diǎn)的縱坐標(biāo)為﹣ ,D點(diǎn)的縱坐標(biāo)為9,
∴得方程﹣4.5a+4.5﹣ =9×2,
解得a1=﹣2,a2=16(舍去).
∴當(dāng)PA=PB時(shí),a=﹣2,
所以答案是﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究發(fā)現(xiàn))
如圖1,在△ABC中,點(diǎn)P是內(nèi)角∠ABC和外角∠ACD的角平分線的交點(diǎn),試猜想∠P與∠A之間的數(shù)量關(guān)系,并證明你的猜想.
(遷移拓展)
如圖2,在△ABC中,點(diǎn)P是內(nèi)角∠ABC和外角∠ACD的n等分線的交點(diǎn),即∠PBC=∠ABC,∠PCD=∠ACD,
試猜想∠P與∠A之間的數(shù)量關(guān)系,并證明你的猜想.
(應(yīng)用創(chuàng)新)
已知,如圖3,AD、BE相交于點(diǎn)C,∠ABC、∠CDE、∠ACE的角平分線交于點(diǎn)P,∠A=35°,∠E=25°,則∠BPD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架長(zhǎng)25米的梯子,斜靠在豎直的墻上,這時(shí)梯子底端離墻7米.
(1)此時(shí)梯子頂端離地面多少米?
(2)若梯子頂端下滑4米,那么梯子底端將向左滑動(dòng)多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C.
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,若四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
(3)聯(lián)接BC交x軸于點(diǎn)F.y軸上是否存在點(diǎn)P,使得△POC與△BOF相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列結(jié)論::①DE平分∠ADC;②E是BC的中點(diǎn);③AD=2CD;④梯形ADCE的面積與△ABE的面積比是3:1,其中正確的結(jié)論的個(gè)數(shù)有( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AE平分∠BAD,交BC于E,過E做EF⊥AD于F,連接BF交AE于P,連接PD.
(1)求證:四邊形ABEF是正方形;
(2)如果AB=6,AD=8,求tan∠ADP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下是兩張不同類型火車的車票(“次”表示動(dòng)車,“次”表示高鐵):
⑴根據(jù)車票中的信息填空:該列動(dòng)車和高鐵是__ _向而行(填“相”或“同”).
⑵知該列動(dòng)車和高鐵的平均速度分別為、,兩列火車的長(zhǎng)度不計(jì).
通過測(cè)算,如果兩列火車直達(dá)終點(diǎn)(即中途都不?咳魏握军c(diǎn)),高鐵比動(dòng)車將早到,求、兩地之間的距離.
②在①中測(cè)算的數(shù)據(jù)基礎(chǔ)上,已知、兩地途中依次設(shè)有個(gè)站點(diǎn)、、、、,且,動(dòng)車每個(gè)站點(diǎn)都?,高鐵只停靠、兩個(gè)站點(diǎn),兩列火車在每個(gè)?空军c(diǎn)都停留.求該列高鐵追上動(dòng)車的時(shí)刻.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,對(duì)于一個(gè)圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式.例如圖可以得到(a+2b)(a+b)=a2+3ab+2b2.請(qǐng)解答下列問題:
(1)寫出圖2所表示的數(shù)學(xué)等式;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)小明同學(xué)用3張邊長(zhǎng)為a的正方形,4張邊長(zhǎng)為b的正方形,7張邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片拼出了一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形較長(zhǎng)一邊的邊長(zhǎng)為多少?
(4)小明同學(xué)又用x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形,z張邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片拼出了一個(gè)面積為(5a+7b)(4a+9b)長(zhǎng)方形,那么x+y+z= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E、F均為中點(diǎn),則下列結(jié)論中:①AF⊥DE;②AD=BP;③PE+PF= PC;④PE+PF=PC.其中正確的是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com