【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F.
(1)求證:四邊形BEDF是平行四邊形;(2)當四邊形BEDF是菱形時,求EF的長.
【答案】(1)見解析(2)
【解析】
(1)根據平行四邊形ABCD的性質,判定△BOE≌△DOF(ASA),得出四邊形BEDF的對角線互相平分,進而得出結論;
(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的長.
(1)證明:∵四邊形ABCD是矩形,O是BD的中點,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF,
在△BOE和△DOF中,
,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,BE⊥EF,
設BE=x,則 DE=x,AE=6x,
在Rt△ADE中,DE=AD+AE,
∴x=4+(6x) ,
解得:x= ,
∵BD=,
∴OB= BD= ,
∵BD⊥EF,
∴EO= ,
∴EF=2EO= .
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
數學課上,老師出示了這樣一個問題:
如圖,菱形和四邊形,,連接,,.
求證:;
某學習小組的同學經過思考,交流了自己的想法:
小明:“通過觀察分析,發(fā)現與存在某種數量關系”;
小強:“通過觀察分析,發(fā)現圖中有等腰三角形”;
小偉:“利用等腰三角形的性質就可以推導出”.
……
老師:“將原題中的條件‘’與結論‘’互換,即若,則,其它條件不變,即可得到一個新命題”.
……
請回答:
(1)在圖中找出與線段相關的等腰三角形(找出一個即可),并說明理由;
(2)求證:;
(3)若,則是否成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:
請你根據圖中的信息,解答下列問題:
(1)補全條形圖;
(2)直接寫出在這次抽測中,測試成績的眾數和中位數;
(3)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達6個以上(含6個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD , ∠BED=110°,BF平分∠ABE,DF平分∠CDE,則∠BFD= ( )
A.110°B.115°C.125°D.130°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點F為BC邊上的一個動點,把△ABF沿AF折疊。當點B的對應點B′落在矩形ABCD的對稱軸上時,則BF的長為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 在四邊形ABCD中,AD∥BC, E為CD的中點,連接 AE 、BE ,BE⊥AE, 延長AE交BC的延長線于 F,求證:(1) BE平分∠ABC (2)AB=BC+AD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)小河的同旁有甲、乙兩個村莊(左圖),現計劃在河岸AB上建一個水泵站,向兩村供水,用以解決村民生活用水問題。(保留作圖痕跡)
①如果要求水泵站到甲、乙兩村莊的距離相等,水泵站M應建在河岸AB上的何處?
②如果要求建造水泵站,供水管道使用建材最省,水泵站N又應建在河岸AB上的何處?
(2)如圖,作出△ABC關于直線l的對稱圖形;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.點P從點A出發(fā),以5cm/s的速度沿AC向終點C勻速移動.過點P作PQ⊥AB,垂足為點Q,以PQ為邊作正方形PQMN,點M在AB邊上,連接CN.設點P移動的時間為t(s).
(1)PQ=______;(用含t的代數式表示)
(2)當點N分別滿足下列條件時,求出相應的t的值;①點C,N,M在同一條直線上;②點N落在BC邊上;
(3)當△PCN為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點E從A出發(fā),沿方向運動,當點E到達點C時停止運動,過點E做,交CD于F點,設點E運動路程為x, ,如圖2所表示的是y與x的函數關系的大致圖象,當點E在BC上運動時,FC的最大長度是,則矩形ABCD的面積是( )
A. B. C. 6 D. 5
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com