【題目】已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與C重合,再展開(kāi),折痕EF交AD邊于E,交BC邊于F,分別連結(jié)AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=13cm,△ABF的周長(zhǎng)為30cm,求△ABF的面積;
(3)在線段AC上是否存在一點(diǎn)P,使得2AE2=ACAP?若存在,請(qǐng)說(shuō)明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)△ABF的面積=30cm2;(3)存在,過(guò)E作EP⊥AD交AC于P,則P就是所求的點(diǎn).理由見(jiàn)解析.
【解析】
(1)連結(jié)EF交AC于點(diǎn)O,由折疊的性質(zhì)得出EF垂直平分AC,OA=OC,由矩形的性質(zhì)得出∠B=90°,AD∥BC,得出∠EAO=∠FCO,由ASA證明△AOE≌△COF,得出OE=OF,證出四邊形AFCE是平行四邊形,即可得出結(jié)論;
(2)由菱形的性質(zhì)得出AF=AE=13cm,設(shè)AB=xcm,BF=ycm,由勾股定理得出x2+y2=169①,由三角形的周長(zhǎng)得出x+y=17cm,因此(x+y)2=289②,由①、②得出xy=60,△ABF的面積= AB×BF=xy即可得出結(jié)果;
(3)過(guò)E作EP⊥AD交AC于P,則P就是所求的點(diǎn).則∠AEP=90°,證出△AOE∽△AEP,得出對(duì)應(yīng)邊成比例,再由,即可得出結(jié)論.
證明:如圖1所示,連結(jié)EF交AC于點(diǎn)O,當(dāng)頂點(diǎn)A與C重合時(shí),折痕EF垂直平分AC,
∴OA=OC,
∵四邊形ABCD是矩形,
∴∠B=90°,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,,
∴△AOE≌△COF(ASA),
∴OE=OF,
∴四邊形AFCE是平行四邊形,
又∵EF⊥AC,
∴四邊形AFCE是菱形;
(2)解:∵四邊形AFCE是菱形,
∴AF=AE=13cm,
設(shè)AB=xcm,BF=ycm,
∵∠B=90°,
∴x2+y2=169 ①,
又∵△ABF的周長(zhǎng)為30cm,
∴x+y+AF=30cm,
∴x+y=17cm,
∴(x+y)2=289②,
由①、②得:xy=60,
∴△ABF的面積=AB×BF=xy=30(cm2).
(3)解:存在,如圖2,過(guò)E作EP⊥AD交AC于P,則P就是所求的點(diǎn).理由如下:
由作法得:∠AEP=90°,
由(1)得:∠AOE=90°,
又∵∠EAO=∠EAP,
∴△AOE∽△AEP,
∴,
∴AE2=AOAP,
∵,
∴,
∴2AE2=ACAP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且 ∠ADE=60°,BD=4,CE=,則△ABC的面積 為( 。
A. B. 15 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E,F分別為邊AB和CD的中點(diǎn),連接DE,BF,且AB=2AD=4.
(1)求證:△AED≌△CFB;
(2)當(dāng)四邊形DEBF為菱形時(shí),求出該菱形的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:y=﹣x﹣1,雙曲線y=,在l上取一點(diǎn)A1,過(guò)A1作x軸的垂線交雙曲線于點(diǎn)B1,過(guò)B1作y軸的垂線交l于點(diǎn)A2,請(qǐng)繼續(xù)操作并探究:過(guò)A2作x軸的垂線交雙曲線于點(diǎn)B2,過(guò)B2作y軸的垂線交l于點(diǎn)A3,…,這樣依次得到l上的點(diǎn)A1,A2,A3,…,An,…記點(diǎn)An的橫坐標(biāo)為an,若a1=2,則a2018=_____;若要將上述操作無(wú)限次地進(jìn)行下去,則a1不可能取的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準(zhǔn)備從國(guó)內(nèi)和國(guó)外兩種銷售方案中選擇一種進(jìn)行銷售.若只在國(guó)內(nèi)銷售,銷售價(jià)格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=x+150,成本為20元/件,無(wú)論銷售多少,每月還需支出廣告費(fèi)62500元,設(shè)月利潤(rùn)為w內(nèi)(元).若只在國(guó)外銷售,銷售價(jià)格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),設(shè)月利潤(rùn)為w外(元).
(1)當(dāng)x=1000時(shí),y= 元/件,w內(nèi)= 元;
(2)分別求出w內(nèi),w外與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)當(dāng)x為何值時(shí),在國(guó)內(nèi)銷售的月利潤(rùn)最大?若在國(guó)外銷售月利潤(rùn)的最大值與在國(guó)內(nèi)銷售月利潤(rùn)的最大值相同,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時(shí)經(jīng)過(guò)頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意一個(gè)三位數(shù)n,如果n滿足各數(shù)位上的字互不相同,且都不為零,那么稱這個(gè)數(shù)為“相異數(shù)”.將一個(gè)“相異數(shù)”任意兩個(gè)數(shù)位上的字對(duì)調(diào)后可以得到三個(gè)不同的新三位數(shù),把這三個(gè)新三位數(shù)的和與111的商記為.例如,對(duì)調(diào)百位與十位上的數(shù)字得到213,對(duì)調(diào)百位與個(gè)位上的數(shù)字得到321,對(duì)調(diào)十位與個(gè)位上的好得到132,這三個(gè)新三位數(shù)的和為,,所以.
(1)計(jì)算:,;
(2)若s,t都是“相異數(shù)”,其中,(,,x,y都是正整數(shù)),規(guī)定:,當(dāng)時(shí),求k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A為x軸上一點(diǎn),點(diǎn)B的坐標(biāo)為(a,b),以OA,AB為邊構(gòu)造OABC,過(guò)點(diǎn)O,C,B的拋物線與x軸交于點(diǎn)D,連結(jié)CD,交邊AB于點(diǎn)E,若AE=BE,則點(diǎn)C的橫坐標(biāo)為( 。
A.a﹣bB.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,已知∠C=90°,∠B=55°,點(diǎn)D在邊BC上,BD=2CD.把△ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m(0<m<180)度后,如果點(diǎn)B恰好落在初始Rt△ABC的邊上,那么m為( )
A.70° B.70°或120°
C.120° D.80°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com