【題目】如圖,在ABC中,AC=BC,∠ACB=90°,點(diǎn)DBC的延長(zhǎng)線上,連接AD,過(guò)BBEAD,垂足為E,交AC于點(diǎn)F,連接CE

(1)求證:BCF≌△ACD

(2)猜想BEC的度數(shù),并說(shuō)明理由;

(3)探究線段AE,BE,CE之間滿(mǎn)足的等量關(guān)系,并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)45°;(3)BE=AE+CE.

【解析】

試題(1)由垂直的定義得到ACB=90°根據(jù)全等三角形的判定定理即可得到結(jié)論;

(2)取AB的中點(diǎn)M,連接CM,EM,根據(jù)圓周角定理即可得到結(jié)論;

(3)作CGCEBEG,根據(jù)等腰直角三角形的性質(zhì)得到CG=CE,根據(jù)全等三角形的性質(zhì)得到BG=AE,于是得到結(jié)論.

試題解析:解:(1)∵BEAD,∠ACB=90°,∴∠1=∠2=90°﹣∠D,在BCFACD中,∵∠1=∠2,BC=AC,∠BCF=∠ACD=90°,∴△BCF≌△ACD;

(2)∠BEC=45°.理由:取AB的中點(diǎn)M,連接CM,EM,則CM=EM=AB=AM=BM,∴點(diǎn)A,B,C,E在同一個(gè)圓(M)上,∴∠BEC=∠BAC=45°;

(3)BE=AE+CE證明如下

CGCEBEG,∵∠BEC=45°,則CGE=45°=∠BEC,CG=CE,∴∠BGC=135°=∠AEC,EG=CE,BCGACE中,∵∠1=∠2,∠BGC=∠AECBC=AC,∴△BCG≌△ACE,∴BG=AE,∴BE=BG+EG=AE+CE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)的內(nèi)部,點(diǎn)和點(diǎn)關(guān)于對(duì)稱(chēng),點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)是,連接,交

1)補(bǔ)全圖,并且保留作圖痕跡.

2)寫(xiě)出 °. 的周長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(滿(mǎn)分10分)有一個(gè)不透明口袋,裝有分別標(biāo)有數(shù)字12,344個(gè)小球(小球除數(shù)字不同外,其余都相同),另有3張背面完全一樣、正面分別寫(xiě)有數(shù)字1,23的卡片.小敏從口袋中任意摸出一個(gè)小球,小穎從這3張背面朝上的卡片中任意摸出一張,然后計(jì)算小球和卡片上的兩個(gè)數(shù)的積.

1)請(qǐng)你求出摸出的這兩個(gè)數(shù)的積為6的概率;

2)小敏和小穎做游戲,她們約定:若這兩個(gè)數(shù)的積為奇數(shù),小敏贏;否則,小穎贏.你認(rèn)為該游戲公平嗎?為什么?如果不公平,請(qǐng)你修改游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市城市綠化工程招標(biāo),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做20天,再由甲、乙合作12天,共完成總工作量的三分之二.

(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?

(2)甲隊(duì)施工l天需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元,該工程由甲乙兩隊(duì)合作若干天后,再由乙隊(duì)完成剩余工作,若要求完成此項(xiàng)工程的工程款不超過(guò)186萬(wàn)元,求甲、乙兩隊(duì)最多合作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線和直線

不論為何值,直線恒交于一定點(diǎn),求點(diǎn)坐標(biāo);

當(dāng)時(shí),設(shè)直線軸圍成的三角形的面積分別為, .

設(shè)直線軸為點(diǎn),交軸為點(diǎn),原點(diǎn)為的面積為.

求①當(dāng)時(shí)直線的條數(shù)各是多少;

②當(dāng)時(shí)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分8分)

如圖,用兩段等長(zhǎng)的鐵絲恰好可以分別圍成一個(gè)正五邊形和一個(gè)正六邊形,其中正五邊形的邊長(zhǎng)為(),正六邊形的邊長(zhǎng)為()cm(其中),求這兩段鐵絲的總長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=y=-kx2+k(k≠0)在同一坐標(biāo)系中圖象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前世界上最高的電視塔是廣州新電視塔.如圖所示,新電視塔高AB為610米,遠(yuǎn)處有一棟大樓,某人在樓底C處測(cè)得塔頂B的仰角為45°,在樓頂D處測(cè)得塔頂B的仰角為39°.

(1)求大樓與電視塔之間的距離AC;

(2)求大樓的高度CD(精確到1米).

(參考數(shù)據(jù):sin39°≈0.6293,cos39°≈0.7771,tan39°≈0.8100)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有兩條邊長(zhǎng)的比值為的直角三角形叫做魅力三角形我們知道,命題直角三角形30°角所對(duì)的直角邊等于斜邊的一半是一個(gè)真命題,所以30°角的直角三角形就是一個(gè)魅力三角形

1)設(shè)魅力三角形較短直角邊為a,較長(zhǎng)直角邊為b,請(qǐng)你直接寫(xiě)出的值.

2)如圖,在RtABC中,∠B90°,BC6,DAB的中點(diǎn),點(diǎn)ECD上,滿(mǎn)足ADDE,連結(jié)AE,過(guò)點(diǎn)DDFAEBC于點(diǎn)F

①如果點(diǎn)ECD的中點(diǎn),求證:BDF魅力三角形

②如果BDF魅力三角形,且BFBC,求線段AC的長(zhǎng)

(二次根式運(yùn)算提示:(2n22n2a,比如:(4242216×348

查看答案和解析>>

同步練習(xí)冊(cè)答案