【題目】如圖,拋物線y= x2+mx+nx軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(10),C(0,2).

(1)求拋物線的表達(dá)式;

(2) 請(qǐng)你在拋物線的對(duì)稱軸上找點(diǎn)P,使△PCD是以CD為腰的等腰三角形,所有符合條件的點(diǎn)P的坐標(biāo)分別為 ;

(3)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

【答案】1y=﹣x2+x+2;(2P1,4),P2,),P3,﹣);(3S四邊形CDBF的面積最大=,E21

【解析】

1)直接把A點(diǎn)和C點(diǎn)坐標(biāo)代入y=x2+mx+nm、n的方程組,然后解方程組求出mn即可得到拋物線解析式;

2)先利用拋物線對(duì)稱軸方程求出拋物線的對(duì)稱軸為直線x=,則D,0),則利用勾股定理計(jì)算出CD=,然后分類討論:如圖1,當(dāng)CP=CD時(shí),利用等腰三角形的性質(zhì)易得P1,4);當(dāng)DP=DC時(shí),易得P2,),P3,﹣);

3)先根據(jù)拋物線與x軸的交點(diǎn)問題求出B40),再利用待定系數(shù)法求出直線BC的解析式為y=x+2,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,設(shè)Ex,﹣x+2)(0x4),則Fx,﹣x2+x+2),則FE=x2+2x,由于△BEF和△CEF共底邊,高的和為4,則SBCF=SBEF+SCEF=4EF=x2+4x,加上SBCD=,所以S四邊形CDBF=SBCF+SBCD=x2+4x+0x4),然后根據(jù)二次函數(shù)的性質(zhì)求四邊形CDBF的面積最大,并得到此時(shí)E點(diǎn)坐標(biāo).

1)∵拋物線y=﹣x2+mx+n經(jīng)過A(﹣1,0),C0,2).

解得:,

∴拋物線的解析式為:y=﹣x2+x+2;

2)拋物線的對(duì)稱軸為直線,則D(,0),

如圖1,

當(dāng)CP=CD時(shí),則P14);

當(dāng)DP=DC時(shí),則P2),P3,﹣),

綜上所述,滿足條件的P點(diǎn)坐標(biāo)為P14),P2),P3,﹣);

3)當(dāng)y=0時(shí),0=﹣x2+x+2

x1=﹣1,x2=4,∴B4,0).

設(shè)直線BC的解析式為y=kx+b,由圖象,得

,解得:,

∴直線BC的解析式為:y=﹣x+2

如圖2,過點(diǎn)CCMEFM,

設(shè)Ea,﹣a+2),Fa,﹣a2+a+2),

EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a0x4).

S四邊形CDBF=SBCD+SCEF+SBEF=BDOC+EFCM+EFBN

=+a(﹣a2+2a)+4a)(﹣a2+2a),

=﹣a2+4a+0x4).=﹣(a22+

a=2時(shí),S四邊形CDBF的面積最大=,

E2,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x22x+3 的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C

1)求A、B、C的坐標(biāo);

2)過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G.若FG=AC,求點(diǎn)F的坐標(biāo);

3E(0,2),連接BE.將△OBE繞平面內(nèi)的某點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△OBEO、B、E的對(duì)應(yīng)點(diǎn)分別為O、BE.若點(diǎn)B、E兩點(diǎn)恰好落在拋物線上,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,對(duì)角線,點(diǎn)E是線段BC上的動(dòng)點(diǎn),連接DE,過點(diǎn)DDPDE,在射線DP上取點(diǎn)F,使得,連接CF,周長(zhǎng)的最小值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn),上兩點(diǎn),且,連接,過點(diǎn)延長(zhǎng)線于點(diǎn),垂足為

1)求證:的切線;

2)若,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有AB兩個(gè)不透明袋子,分別裝有3個(gè)除顏色外完全相同的小球.其中,A袋裝有2個(gè)白球,1個(gè)紅球;B袋裝有2個(gè)紅球,1個(gè)白球.

(1)將A袋搖勻,然后從A袋中隨機(jī)取出一個(gè)小球,則摸出小球是白色的概率為

(2)小華和小林商定了一個(gè)游戲規(guī)則:從搖勻后的A,B兩袋中隨機(jī)摸出一個(gè)小球,摸出的這兩個(gè)小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝.請(qǐng)用列表或畫出樹狀圖的方法說明這個(gè)游戲規(guī)則對(duì)雙方是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用長(zhǎng)33米的竹籬笆圍成一個(gè)矩形院墻,其中一面靠墻,墻長(zhǎng)15米,墻的對(duì)面有一個(gè)2米寬的門,設(shè)垂直于墻的一邊長(zhǎng)為米,院墻的面積為平方米.

1)直接寫出的函數(shù)關(guān)系式;

2)若院墻的面積為143平方米,求的值;

3)若在墻的對(duì)面再開一個(gè)寬為米的門,且面積的最大值為165平方米,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形ABCD中,AB4cm,BC8cm,AC的垂直平分線EF分別交ADBC于點(diǎn)E、F,垂足為O

1)如圖(1),連接AFCE

①四邊形AFCE是什么特殊四邊形?說明理由;

②求AF的長(zhǎng);

2)如圖(2),動(dòng)點(diǎn)PQ分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)PAFBA停止,點(diǎn)QCDEC停止.在運(yùn)動(dòng)過程中,已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、CP、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】內(nèi)接于邊于點(diǎn),連接

如圖1,求證:

如圖2,延長(zhǎng)于點(diǎn),點(diǎn)在線段上,射線邊于點(diǎn),連接,若,求證:;

如圖3,在的條件下,連接,若,,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=-x2+mx+3與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),拋物線與直線y=-x+3交于C、D兩點(diǎn).連接BD、AD.

(1)求m的值.

(2)拋物線上有一點(diǎn)P,滿足S△ABP=4S△ABD,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案