【題目】如圖,在△ABC中,BC=6,將△ABC沿BC方向平移得到△A′B′C′,連接AA′,若A′B′恰好經(jīng)過AC的中點O,則AA′的長度為 .
【答案】3
【解析】解:∵△ABC沿BC方向平移得到△A′B′C′, ∴AA′=BB′,AA′∥BB′,
∴四邊形ABB′A′為平行四邊形,
∴AB∥A′B′,
∵點O為AC的中點,
∴OB′為△ABC的中位線,
∴BB′=CB′= BC=3,
∴AA′=3.
所以答案是3.
【考點精析】解答此題的關(guān)鍵在于理解平移的性質(zhì)的相關(guān)知識,掌握①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點所連的線段平行(或在同一直線上)且相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標系中,的頂點的坐標為,頂點的坐標為,頂點的坐標為.
(1)請你在所給的平面直角坐標系中,畫出關(guān)于軸對稱的;
(2)將(1)中得到的向下移動4個單位得到,畫出;
(3)在中有一點,直接寫出經(jīng)過以上兩次圖形變換后中對應(yīng)點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.
(1)如圖1,當α=60°時,求證:△DCE是等邊三角形;
(2)如圖2,當α=45°時,求證:① = ;②CE⊥DE.
(3)如圖3,當α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關(guān)系是: = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸、垂足為點B,反比例函數(shù)y= (x<0)的圖象經(jīng)過AO的中點C、且與AB相交于點D,OB=8、AD=6.
(1)求反比例函數(shù)y= 的解析.
(2)求經(jīng)過C,D兩點的一次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=x2﹣(k+1)x+k與x軸相交于A、B兩點(點B位于點A的左側(cè)),與y軸相交于點C.
(1)如圖1,若k=2,直接寫出AB的長:AB= .
(2)若AB=2,則k的值為 .
(3)如圖2,若k=﹣3,
①求直線BC的解析式;
(4)如圖3,若k<0,且△ABC是等腰三角形,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內(nèi)一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.
(1)求∠ADE的度數(shù);
(2)求證:DE=AD+DC;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中建立平面直角坐標系后,三個頂點的坐標分別為,,.
(1)畫出關(guān)于軸的對稱圖形;
(2)借助圖中的網(wǎng)格,請只用直尺(不含刻度)完成以下要求:(友情提醒:請別忘了標注字母)
①在圖中找一點,使得到邊的距離相等,且;
②在軸上找一點,使得的周長最小,并求出此時點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com