【題目】如圖,△AOB與△ACD均為正三角形,且頂點B、D均在雙曲線y= (x>0)上,點A、C在x軸上,連接BC交AD于點P,則△OBP的面積= .
【答案】4
【解析】解:設(shè)等邊△AOB的邊長為a,則點B的坐標(biāo)為( a, a), ∵點B在雙曲線y= (x>0)上,
∴ a a=4,
∴S△OBA= a a=4.
∵△AOB與△ACD均為正三角形,
∴∠BOA=∠DAC=60°,
∴OB∥AD,
∴S△OBP=S△OBA=4.
【考點精析】通過靈活運用比例系數(shù)k的幾何意義和平行線的性質(zhì),掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積;兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點A在x軸的正半軸,點C在y軸的正半軸.拋物線y= x2﹣ x+4經(jīng)過點B,C,連接OB,D是OB上的動點,過D作DE∥OA交拋物線于點E(在對稱軸右側(cè)),過E作EF⊥OB于F,以ED,EF為鄰邊構(gòu)造DEFG,則DEFG周長的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車在公路上勻速行駛,下表記錄的是汽車在加滿油后油箱內(nèi)余油量y(升)與行駛時間x(時)之間的關(guān)系:
行駛時間x(時) | 0 | 1 | 2 | 2.5 |
余油量y(升) | 100 | 80 | 60 | 50 |
(1)小明分析上表中所給的數(shù)據(jù)發(fā)現(xiàn)x,y成一次函數(shù)關(guān)系,試求出它們之間的函數(shù)表達(dá)式(不要求寫出自變量的取值范圍);
(2)求汽車行駛4.2小時后,油箱內(nèi)余油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長方體的表面展開圖中四邊形ABCD是正方形(正方形的四個角都是直角、四條邊都相等),則根據(jù)圖中數(shù)據(jù)可得原長方體的體積是_________cm3.
【答案】20
【解析】
利用正方形的性質(zhì)以及圖形中標(biāo)注的長度得出AB=AE=5cm,進(jìn)而得出長方體的長、寬、高進(jìn)而得出答案.
如圖:
,
∵四邊形ABCD是正方形,
∴AB=AE=5cm,
∴立方體的高為:(7-5)÷2=1(cm),
∴EF=5-1=4(cm),
∴原長方體的體積是:5×4×1=20(cm3).
故答案為:20.
【點睛】
此題主要考查了幾何體的展開圖,利用已知圖形得出各邊長是解題關(guān)鍵.
【題型】填空題
【結(jié)束】
19
【題目】計算:
(1)-4-28-(-19)+(-24);
(2)-14÷(2017-π)0-(-)-2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4﹣x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當(dāng)x取何值時,花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(列方程解答)
(2)該車行計劃今年新進(jìn)一批A型車和B型車共60輛,A型車的進(jìn)貨價為每輛1100元,銷售價與(1)相同;B型車的進(jìn)貨價為每輛1400元,銷售價為每輛2000元,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C
處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達(dá)蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班學(xué)生分兩組參加某項活動,甲組有26人,乙組有32人,后來由于活動需要,從甲組抽調(diào)了部分學(xué)生去乙組,結(jié)果乙組的人數(shù)是甲組人數(shù)的2倍還多1人.從甲組抽調(diào)了多少學(xué)生去乙組?
【答案】7個人
【解析】
試題設(shè)從甲組抽調(diào)了個學(xué)生去乙組,根據(jù)抽調(diào)后乙組的人數(shù)是甲組人數(shù)的2倍還多1人即可得出關(guān)于的一元一次方程,解之即可得出結(jié)論.
試題解析:設(shè)從甲組抽出人到乙組,
答:從甲組抽調(diào)了7名學(xué)生去乙組
【題型】解答題
【結(jié)束】
26
【題目】如圖,直線AB和CD交于點O,OE⊥AB,垂足為點O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC與∠COE的度數(shù);
(2)求∠BOP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在黑板上出了一道解方程的題,小虎馬上舉手,要求到黑板上去做,他是這樣做的:
5(3x-1)=2(4x+2)-1①,
15x-5=8x+4-1②,
15x-8x=4-1+5③
7x④,
x=⑤
老師說:小虎解一元一次方程的一般步驟都知道,但沒有掌握好,因此解題出現(xiàn)了錯誤,請指出他的錯步及錯誤原因: ,方程的正確的解是x= .
然后,你自己細(xì)心的解下面的方程:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com