【題目】如圖,△AOB與△ACD均為正三角形,且頂點B、D均在雙曲線y= (x>0)上,點A、C在x軸上,連接BC交AD于點P,則△OBP的面積=

【答案】4
【解析】解:設(shè)等邊△AOB的邊長為a,則點B的坐標(biāo)為( a, a), ∵點B在雙曲線y= (x>0)上,
a a=4,
∴SOBA= a a=4.
∵△AOB與△ACD均為正三角形,
∴∠BOA=∠DAC=60°,
∴OB∥AD,
∴SOBP=SOBA=4.
【考點精析】通過靈活運用比例系數(shù)k的幾何意義和平行線的性質(zhì),掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積;兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點A在x軸的正半軸,點C在y軸的正半軸.拋物線y= x2 x+4經(jīng)過點B,C,連接OB,D是OB上的動點,過D作DE∥OA交拋物線于點E(在對稱軸右側(cè)),過E作EF⊥OB于F,以ED,EF為鄰邊構(gòu)造DEFG,則DEFG周長的最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在公路上勻速行駛,下表記錄的是汽車在加滿油后油箱內(nèi)余油量y(升)與行駛時間x(時)之間的關(guān)系:

行駛時間x(時)

0

1

2

2.5

余油量y(升)

100

80

60

50

(1)小明分析上表中所給的數(shù)據(jù)發(fā)現(xiàn)x,y成一次函數(shù)關(guān)系,試求出它們之間的函數(shù)表達(dá)式(不要求寫出自變量的取值范圍);

(2)求汽車行駛4.2小時后,油箱內(nèi)余油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個長方體的表面展開圖中四邊形ABCD是正方形(正方形的四個角都是直角、四條邊都相等),則根據(jù)圖中數(shù)據(jù)可得原長方體的體積是_________cm3

【答案】20

【解析】

利用正方形的性質(zhì)以及圖形中標(biāo)注的長度得出AB=AE=5cm,進(jìn)而得出長方體的長、寬、高進(jìn)而得出答案.

如圖

∵四邊形ABCD是正方形,

AB=AE=5cm,

∴立方體的高為:(7-5)÷2=1(cm),

EF=5-1=4(cm),

∴原長方體的體積是:5×4×1=20(cm3).

故答案為:20.

【點睛】

此題主要考查了幾何體的展開圖,利用已知圖形得出各邊長是解題關(guān)鍵.

型】填空
結(jié)束】
19

【題目】計算:

(1)-4-28-(-19)+(-24);

(2)-14÷(2017-π)0-(-)-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:求代數(shù)式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代數(shù)式m2+m+4的最小值;

(2)求代數(shù)式4﹣x2+2x的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當(dāng)x取何值時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(列方程解答)
(2)該車行計劃今年新進(jìn)一批A型車和B型車共60輛,A型車的進(jìn)貨價為每輛1100元,銷售價與(1)相同;B型車的進(jìn)貨價為每輛1400元,銷售價為每輛2000元,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達(dá)蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班學(xué)生分兩組參加某項活動,甲組有26人,乙組有32人,后來由于活動需要,從甲組抽調(diào)了部分學(xué)生去乙組,結(jié)果乙組的人數(shù)是甲組人數(shù)的2倍還多1人.從甲組抽調(diào)了多少學(xué)生去乙組?

【答案】7個人

【解析】

試題設(shè)從甲組抽調(diào)了個學(xué)生去乙組,根據(jù)抽調(diào)后乙組的人數(shù)是甲組人數(shù)的2倍還多1人即可得出關(guān)于的一元一次方程,解之即可得出結(jié)論.

試題解析:設(shè)從甲組抽出人到乙組,



答:從甲組抽調(diào)了7名學(xué)生去乙組

型】解答
結(jié)束】
26

【題目】如圖,直線ABCD交于點O,OEAB,垂足為點O,OP平分∠EODAOD=144°.

(1)求∠AOC與∠COE的度數(shù);

(2)求∠BOP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師在黑板上出了一道解方程的題,小虎馬上舉手,要求到黑板上去做,他是這樣做的:

5(3x-1)=2(4x+2)-1①,

15x-5=8x+4-1②,

15x-8x=4-1+5③

7x④,

x=

老師說:小虎解一元一次方程的一般步驟都知道,但沒有掌握好,因此解題出現(xiàn)了錯誤,請指出他的錯步及錯誤原因:   ,方程的正確的解是x   

然后,你自己細(xì)心的解下面的方程:.

查看答案和解析>>

同步練習(xí)冊答案