【題目】(1)如圖1,△ABC中,D是BC邊上一點,則△ABD與△ADC有一個相同的高,它們的面積之比等于相應的底之比,記為(△ABD、△ADC的面積分別用記號、表示).現有,則 .
(2)如圖2,△ABC中,E、F分別是BC、AC邊上一點,且有, ,AE與BF相交于點G.現作EH∥BF交AC于點H.依次求、、的值.
(3)如圖3,△ABC中,點P在邊AB上,點M、N在邊AC上,且有, ,
BM、BN與CP分別相交于點R、Q.現已知△ABC的面積為1,求△BRQ的面積.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交AC于M.
(1)若∠B=70°,則∠NMA的度數是 .
(2)連接MB,若AB=8cm,△MBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在點P,使由P,B,C構成的△PBC的周長值最?若存在,標出點P的位置并求△PBC的周長最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c過點A(﹣4,﹣3),與y軸交于點B,C,對稱軸是x=﹣3,請解答下列問題:
(1)求拋物線的解析式.
(2)求點B的坐標;
(3)過點B作與x軸平行的直線交拋物線交點C,在拋物線的對稱軸上的確存在一點P,使PA+PC的值最小,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場把一個雙肩背的書包按進價提高60%標價,然后再按8折(標價的80%)出售,這樣商場每賣出一個書包就可贏利14元.這種書包的進價是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】莫菲、隆迪、紫惠和曲代4人一起去火鍋店吃火鍋,4人在如圖所示的四人桌前就座,其中莫菲和紫惠坐在餐桌的同側,
(1)請用適當的方法表示出所有的不同就座方案.
(2)請問隆迪恰好坐在靠近過道一側的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列語句中,正確的是( )
①三個點確定一個圓;②同弧或等弧所對的圓周角相等;③平分弦的直徑垂直于弦,并且平分弦所對的。虎軋A內接平行四邊形一定是矩形。
A.①②B.②③C.②④D.④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近幾年,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也在逐年增加.某商場從廠家購進了A,B兩種型號的空氣凈化器,兩種凈化器的銷售相關信息見下表:
A型銷售數量(臺) | B型銷售數量(臺) | 總利潤(元) |
5 | 10 | 2 000 |
10 | 5 | 2 500 |
(1)每臺A型空氣凈化器和B型空氣凈化器的銷售利潤分別是多少?
(2)該公司計劃一次購進兩種型號的空氣凈化器共100臺,其中B型空氣凈化器的進貨量不少于A型空氣凈化器的2倍,為使該公司銷售完這100臺空氣凈化器后的總利潤最大,請你設計相應的進貨方案;
(3)已知A型空氣凈化器的凈化能力為300 m3/小時,B型空氣凈化器的凈化能力為200 m3/小時.某長方體室內活動場地的總面積為200 m2,室內墻高3 m.該場地負責人計劃購買5臺空氣凈化器每天花費30分鐘將室內空氣凈化一新,如不考慮空氣對流等因素,至少要購買A型空氣凈化器多少臺?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com