【題目】如圖,在平面直角坐標(biāo)系中,四邊形是正方形,點的坐標(biāo)為,弧是以點為圓心,為半徑的圓;弧是以點為圓心,為半徑的圓;弧是以點為圓心,為半徑的圓;弧是以點為圓心,為半徑的圓弧,繼續(xù)以點為圓心,按上述作法得到的曲線,稱為正方形的“漸開線”,則點的坐標(biāo)是______

【答案】1,2021).

【解析】

根據(jù)畫弧的方法以及羅列部分點的坐標(biāo)發(fā)現(xiàn):點Ax的坐標(biāo)滿足“A4n=(1,4n+1),A4n+1=(4n+2,0),A4n+2=(0,﹣(4n+2)),A4n+3=(﹣(4n+3),1)”,根據(jù)這一規(guī)律即可得出A2020點的坐標(biāo).

解:觀察,找規(guī)律:A1,1),A12,0),A20,﹣2),A3(﹣3,1),A41,5),A560),A60,﹣6),A7(﹣7,1),A81,9)…,

A4n=(1,4n+1),A4n+1=(4n+2,0),A4n+2=(0,﹣(4n+2)),A4n+3=(﹣(4n+3),1).

2020505×4,

A2020的坐標(biāo)為(1,2021).

故答案為:(1,2021).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yaxm2+2mm0)經(jīng)過原點,其頂點為P,與x軸的另一交點為A

1P點坐標(biāo)為   A點坐標(biāo)為   ;(用含m的代數(shù)式表示)

2)求出a,m之間的關(guān)系式;

3)當(dāng)m0時,若拋物線yaxm2+2m向下平移m個單位長度后經(jīng)過點(1,1),求此拋物線的表達式;

4)若拋物線yaxm2+2m向下平移|m|個單位長度后與x軸所截的線段長,與平移前相比有什么變化?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓的直徑,C是半圓弧上一點,正方形DEFG的一邊DG在直徑AB上,另一邊DE過△ABC的內(nèi)切圓圓心O,且點E在半圓上.

1)當(dāng)正方形的頂點F也在半圓弧上時,半圓的半徑與正方形邊長的比為   ;

2)當(dāng)正方形DEFG的面積為100,且△ABC的內(nèi)切圓O的半徑r4,求半圓的直徑AB的值;

3)若半圓的半徑為R,直接寫出O半徑r可取得的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD對角線AC、BD交于點O,邊AB=6,AD=8,四邊形OCED為菱形,若將菱形OCED繞點O旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中OE與矩形ABCD的邊的交點始終為M,則線段ME的長度可取的整數(shù)值為___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點E,GFCD,垂足為點F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

(3)拓展與運用:

正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CGAD于點H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,點,點,的中線軸交于點,且經(jīng)過,,三點.

1)求圓心的坐標(biāo);

2)若直線相切于點,交軸于點,求直線的函數(shù)表達式;

3)在過點且以圓心為頂點的拋物線上有一動點,過點軸,交直線于點.若以為半徑的與直線相交于另一點.當(dāng)時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的半徑為,點與圓心不重合,給出如下定義:若在上存在一點,使,則稱點的特征點.

1)當(dāng)的半徑為1時,如圖1

①在點,中,的特征點是__________

②點在直線上,若點的特征點,求的取值范圍.

2)如圖2,的圓心在軸上,半徑為2,點,.若線段上的所有點都是的特征點,直接寫出圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為文筆雙塔,是太原的標(biāo)志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標(biāo)桿CD,這時地面上的點E,標(biāo)桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC4米,將標(biāo)桿CD向后平移到點C處,這時地面上的點F,標(biāo)桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG6米,GC53米.

請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面所示各圖是在同一直角坐標(biāo)系內(nèi),二次函數(shù)y+a+cx+c與一次函數(shù)yax+c的大致圖象.正確的( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案