某相宜本草護(hù)膚品專柜計(jì)劃在春節(jié)前夕促銷甲、乙兩款護(hù)膚品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下兩種信息:
信息一:銷售甲款護(hù)膚品所獲利潤y(元)與銷售量x(件)之間存在二次函數(shù)關(guān)系y=ax2+bx.在x=10時(shí),y=140;當(dāng)x=30時(shí),y=360.
信息二:銷售乙款護(hù)膚品所獲利潤y(元)與銷售量x(件)之間存在正比例函數(shù)關(guān)系y=3x.請(qǐng)根據(jù)以上信息,解答下列問題;
(1)求信息一中二次函數(shù)的表達(dá)式;
(2)該相宜本草護(hù)膚品專柜計(jì)劃在春節(jié)前夕促銷甲、乙兩款護(hù)膚品共100件,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營銷方案,使銷售甲、乙兩款護(hù)膚品獲得的利潤之和最大,并求出最大利潤.
(1)y=-0.1x2+15x;(2)購進(jìn)甲產(chǎn)品60件,購進(jìn)一產(chǎn)品40件,最大利潤是660元.

試題分析:(1)把兩組數(shù)據(jù)代入二次函數(shù)解析式,然后利用待定系數(shù)法求解即可;
(2)設(shè)購進(jìn)甲產(chǎn)品m件,購進(jìn)乙產(chǎn)品(10-m)件,銷售甲、乙兩種產(chǎn)品獲得的利潤之和為W元,根據(jù)總利潤等于兩種產(chǎn)品的利潤的和列式整理得到W與m的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的最值問題解答.
試題解析:(1)∵當(dāng)x=10時(shí),y=140;當(dāng)x=30時(shí),y=360,
,解得:a=?0.1,b=15,
所以,二次函數(shù)解析式為y=-0.1x2+15x;
(2)設(shè)購進(jìn)甲產(chǎn)品m件,購進(jìn)乙產(chǎn)品(100-m)件,銷售甲、乙兩種產(chǎn)品獲得的利潤之和為W元,
則W=-0.1m2+15m+3(100-m)=-0.1m2+12m+300=-0.1(m-60)2+660,
∵-0.1<0,
∴當(dāng)m=60時(shí),W有最大值660元,
∴購進(jìn)甲產(chǎn)品60件,購進(jìn)一產(chǎn)品40件,銷售甲、乙兩種產(chǎn)品獲得的利潤之和最大,最大利潤是660元.
考點(diǎn):二次函數(shù)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,把拋物線y=﹣x2+1向上平移3個(gè)單位,再向左平移1個(gè)單位,則所得拋物線的解析式是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的部分圖象如圖所示,若,則的取值范圍是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2﹣2mx+4m﹣8(1)當(dāng)x≤2時(shí),函數(shù)值y隨x的增大而減小,求m的取值范圍.(2)以拋物線y=x2﹣2mx+4m﹣8的頂點(diǎn)A為一個(gè)頂點(diǎn)作該拋物線的內(nèi)接正三角形AMN(M,N兩點(diǎn)在拋物線上),請(qǐng)問:△AMN的面積是與m無關(guān)的定值嗎?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由.(3)若拋物線y=x2﹣2mx+4m﹣8與x軸交點(diǎn)的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把拋物線向左平移一個(gè)單位,所得拋物線的表達(dá)式為:                

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請(qǐng)寫出一個(gè)二次函數(shù),使它的圖象滿足下列兩個(gè)條件:(1)開口向下;(2)與y軸的交點(diǎn)是(0,2) .你寫出的函數(shù)表達(dá)式是                    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

與y=2(x-1)2+3形狀相同的拋物線解析式為(     )
A.y=1+x2B.y=(2x+1)2C.y=(x-1)2D.y=2x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)邊長為3厘米的正方形,若它的邊長增加厘米,面積隨之增加平方厘米,則關(guān)于的函數(shù)解析式是    .(不寫定義域)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=﹣2x2經(jīng)過平移到y(tǒng)=﹣2x2﹣4x﹣5,平移方法是( 。
A.向左平移1個(gè)單位,再向上平移3各單位
B.向左平移1個(gè)單位,再向下平移3個(gè)單位
C.向右平移1個(gè)單位,再向上平移3個(gè)單位
D.向右平移1個(gè)單位,再向下平移3個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案