【題目】如圖,有一直角三角形紙片ABC,∠C=90°,∠B=30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,則BC的長度為( )

A. 2 B. +2 C. 3 D. 2

【答案】C

【解析】分析: 先由∠B30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,得到AD=BD=2, 再根據(jù)∠C=90°,∠B30°得∠CAD=30°,然后在Rt△ACD中,利用30°的角所對的直角邊是斜邊的一半求得CD=1,從而求得BC的長度.

詳解: ∵△ABC折疊,點B與點A重合,折痕為DE,

∴AD=BD,B=∠CAD= 30°, ∠DEB=90°,

∴AD=BD=2, ∠CAD=30°,

∴CD=AD=1,

∴BC=BD+CD=2+1=3

故選:C.

點睛: 本題考查了翻折變換,主要利用了翻折前后對應邊相等,此類題目,難點在于利用直角三角形中30°的角所對應的直角邊是斜邊的一半來解決問題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,的頂點均在格點上,點A的坐標為,點B的坐標為,點C的坐標為.

1)以點C為旋轉(zhuǎn)中心,將旋轉(zhuǎn)后得到,請畫出;

2)平移,使點A的對應點的坐標為,請畫出;

3)若將繞點P旋轉(zhuǎn)可得到,則點P的坐標為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=4cm,C為弧AB的中點,DOA的中點,則圖中陰影部分的面積為________cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點,若在該圖象上有一點,使得,則點的坐標是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條高鐵線AB,C三個車站的位置如圖所示.已知B,C兩站之間相距530千米.高鐵列車從B站出發(fā),向C站方向勻速行駛,經(jīng)過13分鐘距A165千米;經(jīng)過80分鐘距A500千米.

1)求高鐵列車的速度和AB兩站之間的距離.(2)如果高鐵列車從A站出發(fā),開出多久可以到達C站?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ABC=90°,BDAC邊上的中線.

(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CEBC于點C,交BD的延長線于點E,連接AE;

(2)求證:四邊形ABCE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,AD//BC,A=90°,AB=12,BC=21,AD=16.動點P從點B出發(fā),沿射線BC的方向以每秒2個單位長的速度運動,動點Q同時從點A出發(fā),在線段AD上以每秒1個單位長的速度向點D運動,當其中一個動點到達端點時另一個動點也隨之停止運動.設(shè)運動的時間為t(秒).

(1)設(shè)DPQ的面積為S,求St之間的函數(shù)關(guān)系式;

(2)分別求出出當t為何值時,①PD=PQ,DQ=PQ?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了豐富學生課余生活,計劃開設(shè)以下課外活動項目:A—版畫,B—機器人,C—航模,D—園藝種植.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查(每位學生必須選且只能選一個項目),并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學生共有 人;扇形統(tǒng)計圖中,“D—園藝種植的學生人數(shù)所占圓心角的度數(shù)是 °

(2)請你將條形統(tǒng)計圖補充完整;

(3)若該校學生總數(shù)為1000,試估計該校學生中最喜歡機器人和最喜歡航模項目的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:①必是負數(shù);②絕對值最小的數(shù)是0;③在數(shù)軸上,原點兩旁的兩個點表示的數(shù)必互為相反數(shù);④在數(shù)軸上,左邊的點比右邊的點所表示的數(shù)大,其中正確的有(

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案