【題目】如圖1,以邊長(zhǎng)為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對(duì)角線AC于點(diǎn)E.

(1)線段AE=____________;

(2)如圖2,以點(diǎn)A為端點(diǎn)作∠DAM=30°,交CD于點(diǎn)M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過(guò)程中AD與⊙O交于點(diǎn)F.

①當(dāng)α=30°時(shí),請(qǐng)求出線段AF的長(zhǎng);

②當(dāng)α=60°時(shí),求出線段AF的長(zhǎng);判斷此時(shí)DM與⊙O的位置關(guān)系,并說(shuō)明理由;

③當(dāng)α=___________°時(shí),DM與⊙O相切。

【答案】(1);(2)①4;②DM與⊙O的位置關(guān)系是相離;③90°

【解析】(1)連接BE,∵AC是正方形ABCD的對(duì)角線,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;

(2)①連接OA、OF,由題意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,則∠OAF=60°,又∵OA=OF,∴△OAF是等邊三角形,∵OA=4,∴AF=OA=4;

②連接B'F,此時(shí)∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4

此時(shí)DM與⊙O的位置關(guān)系是相離;

③∵AD=8,直徑的長(zhǎng)度相等,∴當(dāng)DM與⊙O相切時(shí),點(diǎn)D在⊙O上,故此時(shí)可得α=∠NAD=90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC是一塊等邊三角形場(chǎng)地,點(diǎn)D,E分別是ACBC邊上靠近C點(diǎn)的三等分點(diǎn).現(xiàn)有一個(gè)機(jī)器人(點(diǎn)P)從A點(diǎn)出發(fā)沿AB邊運(yùn)動(dòng),觀察員選擇了一個(gè)固定的位置記錄機(jī)器人的運(yùn)動(dòng)情況.設(shè)APx,觀察員與機(jī)器人之間的距離為y,若表示yx的函數(shù)關(guān)系的圖象大致如圖2所示,則觀察員所處的位置可能是圖1的( )

A. 點(diǎn)B B. 點(diǎn)C C. 點(diǎn)D D. 點(diǎn)E

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】代數(shù)式x2 +2x +3 的最______(填“大”或者“小”)值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,4),點(diǎn)M是線段AB上任意一點(diǎn)(A,B兩點(diǎn)除外)。

(1)求直線AB的解析式;

(2)過(guò)點(diǎn)M分別作MC⊥OA于點(diǎn)C,MD⊥OB于點(diǎn)D,當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),你認(rèn)為四邊形OCMD的周長(zhǎng)是否發(fā)生變化?并說(shuō)明理由;

(3)當(dāng)點(diǎn)M把線段AB分成的兩部分的比為1:3時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線ACBD相交于點(diǎn)O,AECF

(1)求證:BOE≌△DOF

(2)若BDEF,連接DEBF,判斷四邊形EBFD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把多項(xiàng)式(m+1)(m﹣1+m﹣1)提取公因式(m﹣1)后,余下的部分是( 。

A. m+1 B. 2m C. 2 D. m+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10a2x+y2-5ax+y3因式分解時(shí),應(yīng)提取的公因式是(  )

A5a B.(x+y2 C5x+y2 D5ax+y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:(x+32x+3=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(x+3)2與|y﹣2|互為相反數(shù),z是絕對(duì)值最小的有理數(shù),求(x+y)y+xyz的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案