【題目】如圖,正ABC的邊長(zhǎng)為2,過點(diǎn)B的直線lAB,且ABC與ABC關(guān)于直線l對(duì)稱,D為線段BC上一動(dòng)點(diǎn),則AD+CD的最小值是

A.4 B.3C.2D.2+

【答案】C

【解析】

試題分析:連接CC,連接AC交y軸于點(diǎn)D,連接AD,此時(shí)AD+CD的值最小,根據(jù)等邊三角形的性質(zhì)即可得出四邊形CBAC為菱形,根據(jù)菱形的性質(zhì)即可求出AC的長(zhǎng)度,從而得出結(jié)論.

連接CC,連接AC交l于點(diǎn)D,連接AD,此時(shí)AD+CD的值最小,如圖所示.

∵△ABC與ABC為正三角形,且ABC與ABC關(guān)于直線l對(duì)稱,

四邊形CBAC為邊長(zhǎng)為2的菱形,且BAC=60°

AC=2×AB=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果x=1是關(guān)于x的方程﹣x+a=3x﹣2的解,則a的值為( 。

A. 1 B. ﹣1 C. 2 D. ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD,點(diǎn)OACBD的交點(diǎn),過點(diǎn)O的直線EFBA,DC的延長(zhǎng)線分別交于點(diǎn)E,F.

(1)求證:AOE≌△COF.

(2)請(qǐng)連接EC,AF,EFAC滿足什么條件時(shí),四邊形AECF是矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)多邊形的內(nèi)角和是1800°,那么這個(gè)多邊形的邊數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是將一正方體貨物沿坡面AB裝進(jìn)汽車貨廂的平面示意圖.已知長(zhǎng)方體貨廂的高度BC為米,tanA=.現(xiàn)把圖中的貨物繼續(xù)往前平移,當(dāng)貨物頂點(diǎn)D與C重合時(shí),仍可把貨物放平裝進(jìn)貨廂,求BD的長(zhǎng).(結(jié)果保留根號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角墻角AOBOAOB,且OA、OB長(zhǎng)度不限)中,要砌20m長(zhǎng)的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉(cāng),且地面矩形AOBC的面積為96m2

(1)求地面矩形AOBC的長(zhǎng);

(2)有規(guī)格為0.80×0.801.00×1.00(單位:m)的地板磚單價(jià)分別為55/塊和80/塊,若只選其中一種地板磚都恰好能鋪滿儲(chǔ)倉(cāng)的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在踐行“社會(huì)主義核心價(jià)值觀”演講比賽中,對(duì)名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:

組號(hào)

分組

頻數(shù)

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2

(1)求a的值.

(2)若用扇形統(tǒng)計(jì)圖來描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對(duì)應(yīng)的扇形的圓心角的度數(shù).

(3)將在第一組內(nèi)的兩名選手記為A1,A2,在第四組內(nèi)的兩名選手記為B1,B2, 從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:x29=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件為必然事件的是 ( )

A. 任意擲一枚均勻的硬幣,正面朝上; B. 籃球運(yùn)動(dòng)員投籃,投進(jìn)籃筐;

C. 一個(gè)星期有七天; D. 打開電視機(jī),正在播放新聞。

查看答案和解析>>

同步練習(xí)冊(cè)答案