【題目】如圖,已知均為等腰三角形,,,將這兩個(gè)三角形放置在一起.

1)問題發(fā)現(xiàn)

如圖①,當(dāng)時(shí),點(diǎn)、、在同一直線上,連接,則的度數(shù)為__________,線段、、之間的數(shù)量關(guān)系是__________;

2)拓展探究

如圖②,當(dāng)時(shí),點(diǎn)、、在同一直線上,連接.請(qǐng)判斷的度數(shù)及線段、、之間的數(shù)量關(guān)系,并說明理由;

3)解決問題

如圖③,,,,連接、,在繞點(diǎn)旋轉(zhuǎn)的過程中,當(dāng)時(shí),請(qǐng)直接寫出的長(zhǎng)

【答案】1;(2;(3

【解析】

1)證明△ACE≌△ABD,得出CE=AD,∠AEC=ADB,即可得出結(jié)論;(2)證明△ACE∽△ABD,得出∠AEC=ADB,,即可得出結(jié)論;(3)先判斷出,再求出,①當(dāng)點(diǎn)E在點(diǎn)D上方時(shí),先判斷出四邊形APDE是矩形,求出AP=DP=AE=2,再根據(jù)勾股定理求出,BP=6,得出BD=4;②當(dāng)點(diǎn)E在點(diǎn)D下方時(shí),同①的方法得,AP=DP=AE=1,BP=4,進(jìn)而得出BD=BP+DP=8,即可得出結(jié)論.

1)在ABC為等腰三角形,AC=BC,∠ACB=60°,

ABC是等邊三角形,

AC=AB,∠CAB=60°,

同理:AE=AD,∠ADE=EAD=60°,

∴∠EAD=CAB,

∴∠EAC=DAB,

∴△ACE≌△ABDSAS),

CE=AD,∠AEC=ADB,

∵點(diǎn)B、DE在同一直線上,

∴∠ADB=180°-ADE=120°,

∴∠AEC=120°,

DE=AE,

BE=DE+BD=AE+CE,

故答案為60°,BE=AE+CE;

2

理由如下:均為等腰三角形, ,

,

,

,

,

點(diǎn)、在同一直線上,

,

;

3)由(2)知,△ACE∽△ABD,

,

Rt△ABC中,,

;

當(dāng)點(diǎn)E在點(diǎn)D上方時(shí),如圖,過點(diǎn)AAP⊥BDBD的延長(zhǎng)線于P,


∵DE⊥BD

∴∠PDE=∠AED=∠APD,

四邊形APDE是矩形,

∵AE=DE,

矩形APDE是正方形,

∴AP=DP=AE=2,

Rt△APB中,根據(jù)勾股定理得,

∴BD=BP-AP=4,

;

當(dāng)點(diǎn)E在點(diǎn)D下方時(shí),如圖,

的方法得,AP=DP=AE=2,BP=4

∴BD=BP+DP=8,

,

即:CE的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,弦CDAB,垂足為H,在CD上有點(diǎn)N滿足CN=CA,AN交圓O于點(diǎn)F,過點(diǎn)FAC的平行線交CD的延長(zhǎng)線于點(diǎn)M,交AB的延長(zhǎng)線于點(diǎn)E

1)求證:EM是圓O的切線;

2)若ACCD=58,AN=3,求圓O的直徑長(zhǎng)度.

3)在(2)的條件下,直接寫出FN的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】記某商品銷售單價(jià)為x元,商家銷售此種商品每月獲得的銷售利潤(rùn)為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷售單價(jià)分別定為55元或75元時(shí),他每月均可獲得銷售利潤(rùn)1800元;當(dāng)商家將此種商品銷售單價(jià)定為80元時(shí),他每月可獲得銷售利潤(rùn)1550元,則yx的函數(shù)關(guān)系式是(

A.y=﹣(x602+1825B.y=﹣2x602+1850

C.y=﹣(x652+1900D.y=﹣2x652+2000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,⊙O的直徑AB與弦CD相交于點(diǎn)E,且ECD中點(diǎn),過點(diǎn)BCD的平行線交弦AD的延長(zhǎng)線于點(diǎn)F .

1)求證:BF是⊙O的切線;

2)連結(jié)BC,若⊙O的半徑為2,tanBCD=,求線段AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,為直徑的⊙于點(diǎn),過點(diǎn)作⊙的切線交于點(diǎn),連接

1)求證:;

2)連接,并延長(zhǎng)交圓于點(diǎn),

填空:①當(dāng)__________時(shí),四邊形是菱形;

②當(dāng)的長(zhǎng)=__________時(shí),四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,-2) .

(1)求這兩個(gè)函數(shù)的關(guān)系式;

(2)觀察圖象,直接寫出使得y1>y2成立的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴(yán)重的燃油公交車,計(jì)劃購(gòu)買A型和B型新能源公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需300萬元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需270萬元,

(1)求購(gòu)買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為80萬人次和100萬人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過1000萬元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=﹣2x2分別與x軸、y軸交于點(diǎn)A、B.頂點(diǎn)為(1,4)的拋物線經(jīng)過點(diǎn)A

1)求拋物線的解析式;

2)點(diǎn)C為第一象限拋物線上一動(dòng)點(diǎn).設(shè)點(diǎn)C的橫坐標(biāo)為m,△ABC的面積為S.當(dāng)m為何值時(shí),S的值最大,并求S的最大值;

3)在(2)的結(jié)論下,若點(diǎn)My軸上,△ACM為直角三角形,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案