【題目】如圖,反比例函數(shù) (x>0)的圖象經(jīng)過矩形OABC對(duì)角線的交點(diǎn)M,分別與AB、BC交于點(diǎn)D、E,若四邊形ODBE的面積為9,則k的值為( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:由題意得:E、M、D位于反比例函數(shù)圖象上,則S△OCE= ,S△OAD= , 過點(diǎn)M作MG⊥y軸于點(diǎn)G,作MN⊥x軸于點(diǎn)N,則S□ONMG=|k|,
又∵M(jìn)為矩形ABCO對(duì)角線的交點(diǎn),
∴S矩形ABCO=4S□ONMG=4|k|,
由于函數(shù)圖象在第一象限,k>0,則 + +9=4k,
解得:k=3.
故選C.
【考點(diǎn)精析】本題主要考查了比例系數(shù)k的幾何意義的相關(guān)知識(shí)點(diǎn),需要掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y= (x+2)(x﹣4)(k為常數(shù),且k>0)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線y=﹣ x+b與拋物線的另一交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為﹣5,求拋物線的函數(shù)表達(dá)式;
(2)若在第一象限內(nèi)的拋物線上有點(diǎn)P,使得以A,B,P為頂點(diǎn)的三角形與△ABC相似,求k的值;
(3)在(1)的條件下,設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足 = ,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.給出下列結(jié)論: ①△ADF∽△AED;②FG=2;③tan∠E= ;④S△DEF=4 .
其中正確的是(寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖數(shù)軸上兩點(diǎn)A、B所對(duì)應(yīng)的數(shù)分別為-3、1,點(diǎn)P在數(shù)軸上從點(diǎn)A出發(fā)以每秒鐘2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),點(diǎn)Q在數(shù)軸上從點(diǎn)B出發(fā)以每秒鐘1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)若點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),求點(diǎn)P和點(diǎn)Q相遇時(shí)的位置所對(duì)應(yīng)的數(shù);
(2)若點(diǎn)P比點(diǎn)Q遲1秒鐘出發(fā),問點(diǎn)P出發(fā)幾秒后,點(diǎn)P和點(diǎn)Q剛好相距1個(gè)單位長(zhǎng)度;
(3)在(2)的條件下,當(dāng)點(diǎn)P和點(diǎn)Q剛好相距1個(gè)單位長(zhǎng)度時(shí),數(shù)軸上是否存在一個(gè)點(diǎn)C,使其到點(diǎn)A、點(diǎn)P和點(diǎn)Q這三點(diǎn)的距離和最小,若存在,直接寫出點(diǎn)C所對(duì)應(yīng)的數(shù),若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,直線AB∥CD,E是AB與AD之間的一點(diǎn),連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC.
證明過程如下:
證明:過點(diǎn)E作EF∥AB,
∵AB∥DC,EF∥AB(輔助線的作法),
∴EF∥DC
∴∠C=∠CEF.
∵EF∥AB,∴∠B=∠BEF
∴∠B+∠C=∠CEF+∠BEF
即∠B+∠C=∠BEC.
(2)如果點(diǎn)E運(yùn)動(dòng)到圖②所示的位置,其他條件不變,∠B,∠C,∠BEC又有什么關(guān)系?并證明你的結(jié)論;
(3)如圖③,AB∥DC,∠C=120°,∠AEC=80°,則∠A= .(寫出結(jié)論,不用寫計(jì)算過程)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD的長(zhǎng)為( )
A.4 cm
B.3 cm
C.5 cm
D.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,把△ABC 紙片沿 DE 折疊,使點(diǎn) A 落在四邊形 BCED 的內(nèi)部點(diǎn) A′的位置,試說明 2∠A=∠1+∠2;
(2)如圖②,若把△ABC 紙片沿 DE 折疊,使點(diǎn) A 落在四邊形 BCED 的外部點(diǎn)A′的位置,寫出∠A 與∠1、∠2 之間的等量關(guān)系(無需說明理由);
(3)如圖③,若把四邊形 ABCD 沿 EF 折疊,使點(diǎn) A、D 落在四邊形BCFE 的內(nèi)部點(diǎn) A′、D′的位置,請(qǐng)你探索此時(shí)∠A、∠D、∠1 與∠2 之間的數(shù)量關(guān)系,寫出你發(fā)現(xiàn)的結(jié)論并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB>AC,∠AEF=∠AFE,EF與BC的延長(zhǎng)線交于點(diǎn)G,試說明:∠G= (∠ACB-∠B).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com