【題目】如圖,正方形ABCD的面積為3cm2,E為BC邊上一點,∠BAE=30°,F(xiàn)為AE的中點,過點F作直線分別與AB,DC相交于點M,N.若MN=AE,則AM的長等于 cm.
【答案】或.
【解析】
試題分析:如圖,作DH∥MN,∵四邊形ABCD是正方形,∴AD=AB,∠DAB=∠B=90°,AB∥CD,∴四邊形DHMN是平行四邊形,∴DH=MN=AE,在RT△ADH和RT△BAE中,∵AD=AB,DH=AE,∴△ADH≌△BAE,∴∠ADH=∠BAE,∴∠ADH+∠AHD=∠ADH+∠AMN=90°,∴∠BAE+∠AMN=90°,∴∠AFM=90°,在RT△ABE中,∵∠B=90°,AB=,∠BAE=30°,∴AEcos30°=AB,∴AE=2,在RT△AFM中,∵∠AFM=90°,AF=1,∠FAM=30°,∴AMcos30°=AF,∴AM=,根據(jù)對稱性當M′N′=AE時,BM′=,AM′=.故答案為:或.
科目:初中數(shù)學 來源: 題型:
【題目】若A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=2(x-1)2+3上的三個點,則y1,y2,y3的大小關系是( )
A. y1>y2>y3 B. y1>y3>y2 C. y3>y2>y1 D. y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工程隊參與某小區(qū)7200平方米(外墻保溫)工程招標,比較這兩個工程隊的標書發(fā)現(xiàn):乙隊每天完成的工程量是甲隊的1.5倍,這樣乙隊單獨干比甲隊單獨干能提前15天完成任務,求甲隊在投標書上注明的每天完成的工程量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD與菱形EFGH的對角線均交于點O,且EG∥BC,將矩形折疊,使點C與點O重合,折痕MN恰好過點G若AB=,EF=2,∠H=120°,則DN的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1 , y1)平移后的對應點為P′(x1+6,y1+4).
(1)請在圖中作出△A′B′C′;
(2)寫出點A′、B′、C′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD中,BC=3,點E、F分別是CB、CD延長線上的點,DF=BE,連接AE、AF,過點A作AH⊥ED于H點.
(1)求證:△ADF≌△ABE;
(2)若BE=1,求tan∠AED的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com