【題目】如圖是某年6月份的日歷.
(1)細(xì)心觀察:小張一家外出旅游5天,這5天的日期之和是20.小張旅游最后一天是 _____________號(hào).
(2)如果用一個(gè)長(zhǎng)方形方框任意框出33個(gè)數(shù),從左下角到右上角的“對(duì)角線”上的3個(gè)數(shù)字的和54,那么這9個(gè)數(shù)的和為______________,在這9個(gè)日期中,最后一天是_____________號(hào).
(3)在這個(gè)月的日歷中,用方框能否圈出“總和為135”的9個(gè)數(shù)?如果能,請(qǐng)求出這9個(gè)日期分別是幾號(hào);如果不能,請(qǐng)說(shuō)明理由.
【答案】(1)6;(2)162;26;(3)不能,理由見(jiàn)解析.
【解析】
(1)設(shè)第一天為x號(hào),依次表示出剩余幾天,然后根據(jù)日期之和為20,列方程求解;
(2)設(shè)中間的數(shù)字為m,那么得到其余兩個(gè)數(shù)分別為m-6,m+6,然后根據(jù)3個(gè)數(shù)字的和為54就可以列出方程求解,繼而可求得最小的日期;
(3)設(shè)中間的數(shù)字為n,依次表示出其他8個(gè)數(shù)字,令這幾個(gè)數(shù)字之和為135,求出各個(gè)日期,然后結(jié)合圖表,進(jìn)行判斷.
解:(1)設(shè)第一天為x號(hào),
由題意得,x+x+1+x+2+x+3+x+4=20,
解得:x=2,
即小張旅游的第一天是2號(hào),最后一天是6號(hào).
(2)設(shè)中間的數(shù)為m,則其余兩個(gè)數(shù)分別為m-6,m+6,
由題意得,m+m-6+m+6=54,
解得:m=18,則其余兩個(gè)數(shù)為12,24,
∴這9個(gè)數(shù)依次為:10,11,12,17,18,19,24,25,26,
這9個(gè)數(shù)的和為10+11+12+17+18+19+24+25+26=162,
則最后一天是為26號(hào);
(3)設(shè)中間的數(shù)為n,
由題意得,9n=135,
解得;n=15,
當(dāng)n=15時(shí),對(duì)比圖示的日歷,不能用題(2)中的方框框出“總和為135”的9個(gè)數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) , 旋轉(zhuǎn)角度是度;
(2)若連結(jié)EF,則△AEF是三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:①如果三角形一邊的中點(diǎn)到其他兩邊距離相等,那么這個(gè)三角形一定是等腰三角形:②兩條對(duì)角線互相垂直且相等的四邊形是正方形:③一組數(shù)據(jù)2,4,6.4的方差是2;④△OAB與△OCD是以O(shè)為位似中心的位似圖形,且位似比為1:4,已知∠OCD=90°,OC=CD.點(diǎn)A、C在第一象限.若點(diǎn)D坐標(biāo)為(2 ,0),則點(diǎn)A坐標(biāo)為( , ),其中正確命題有(填正確命題的序號(hào)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E在AD上,連接CE并延長(zhǎng)與BA的延長(zhǎng)線交于點(diǎn)F,若AE=2ED,CD=3cm,則AF的長(zhǎng)為( )
A.5cm
B.6cm
C.7cm
D.8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)興趣小組開(kāi)展了一次課外活動(dòng),過(guò)程如下:
如圖①,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)與D點(diǎn)重合,三角板的一邊交AB于點(diǎn)P,另一邊交BC的延長(zhǎng)線于點(diǎn)Q.
(1)求證:AP=CQ;
(2)如圖②,小明在圖①的基礎(chǔ)上作∠PDQ的平分線DE交BC于點(diǎn)E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請(qǐng)猜測(cè)他的結(jié)論并證明.
(3)如圖③,固定三角板直角頂點(diǎn)在D點(diǎn)不動(dòng),轉(zhuǎn)動(dòng)三角板,使三角板的一邊交AB的延長(zhǎng)線于點(diǎn)P,另一邊交BC的延長(zhǎng)線于點(diǎn)Q,仍作∠PDQ的平分線DE交BC的延長(zhǎng)線于點(diǎn)E,連接PE,若AB:AP=3:4,請(qǐng)幫小明算出△ DEQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘海上巡邏船在A地巡航,這時(shí)接到B地海上指揮中心緊急通知:在指揮中心北偏西60°方向的C地有一艘漁船遇險(xiǎn),要求馬上前去救援,要求馬上前去救援.此時(shí)C地位于A地北偏西30°方向上,A地位于B地北偏西75°方向上,A、B兩地之間的距離為12海里,則A、C兩地之間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華和小容都想?yún)⒓訉W(xué)校組織的數(shù)學(xué)興趣小組,根據(jù)學(xué)校分配的名額,他們兩人只能有1人參加.數(shù)學(xué)老師想出了一個(gè)主意:如圖,給他們六張卡片,每張卡片上都有一些數(shù),將化簡(jiǎn)后的數(shù)在數(shù)軸上表示出來(lái),再用“<”連接起來(lái),誰(shuí)先按照要求做對(duì),誰(shuí)就參加興趣小組,你也一起來(lái)試一試吧!
-(-2) (-1)3 -|-3| 0的相反數(shù)
① ② 、邸 、
-0.4的倒數(shù) 比-1大2.5的數(shù)
⑤ 、
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十·一”黃金周期間,我市某景點(diǎn)旅游區(qū)在7天假期中每天旅游的人數(shù)變化如下表:
(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù)).(單位:萬(wàn)人)
日 期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人數(shù)變化 | + 1.2 | + 1.2 | + 0.4 | – 0.2 | – 0.8 | + 0.2 | – 1.4 |
若9月30日的旅游人數(shù)記為3萬(wàn)人,則
(1)請(qǐng)求出10月5日的旅游人數(shù);
(2)請(qǐng)判斷7天內(nèi)旅游人數(shù)最多的是哪一天?最少的是哪一天?它們相差多少萬(wàn)人?
(3)若該景點(diǎn)門(mén)票為每人20元,請(qǐng)算出該景點(diǎn)黃金周期間的收入共多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村莊計(jì)劃建造A,B兩種型號(hào)的沼氣池共20個(gè),以解決該村所有農(nóng)戶的燃料問(wèn)題.兩種型號(hào)沼氣池的占地面積和可供使用農(nóng)戶數(shù)見(jiàn)下表:
型號(hào) | 占地面積 (單位:m2/個(gè)) | 可供使用農(nóng)戶數(shù) (單位:戶/個(gè)) |
A | 15 | 18 |
B | 20 | 30 |
已知可供建造沼氣池的占地面積不超過(guò)365m2,該村農(nóng)戶共有492戶.
(1)如何合理分配建造A,B型號(hào)“沼氣池”的個(gè)數(shù)才能滿足條件?滿足條件的方案有幾種?通過(guò)計(jì)算分別寫(xiě)出各種方案.
(2)請(qǐng)寫(xiě)出建造A、B兩種型號(hào)的“沼氣池”的總費(fèi)用y和建造A型“沼氣池”個(gè)數(shù)x之間的函數(shù)關(guān)系式;
(3)若A型號(hào)“沼氣池”每個(gè)造價(jià)2萬(wàn)元,B型號(hào)“沼氣池”每個(gè)造價(jià)3萬(wàn)元,試說(shuō)明在(1)中的各種建造方案中,哪種建造方案最省錢,最少的費(fèi)用需要多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com