【題目】如圖,在平面直角坐標系中,拋物線y=-x2+bx+c經過點(0,6),其對稱軸為直線x=.在x軸上方作平行于x軸的直線l與拋物線交于A、B兩點(點A在對稱軸的右側),過點A、B作x軸的垂線,垂足分別為D、C.設A點的橫坐標為m.
(1)求此拋物線所對應的函數(shù)關系式.
(2)當m為何值時,矩形ABCD為正方形.
(3)當m為何值時,矩形ABCD的周長最大,并求出這個最大值.
【答案】(1)y=-x2+3x+6;(2);(3)當時,矩形ABCD的周長最大為.
【解析】
(1)首先根據(jù)對稱軸求得b值,然后代入點(0,6)求得c值即可;
(2)首先用含m的代數(shù)式表示出線段AB、AD的長,然后利用正方形ABCD的AB=CD得到有關m的等式求得m的值即可;
(3)表示出正方形的周長,然后利用配方法求最值即可;
(1)∵對稱軸為直線x=,
∴,
∴b=3.
把(0,6)代入y=-x2+3x+c得,
6=-0+3×0+c,
解得c=6.
∴此拋物線所對應的函數(shù)關系式為y=-x2+3x+6.
(2)根據(jù)題意,得
AD=-m2+3m+6.
∵矩形ABCD為正方形,AB=AD.
∴2m-3=-m2+3m+6,
解得.
∵點A在對稱軸的右側,
∴.
∴(舍去).
∴.
(3)設矩形ABCD的周長為C.
.
∴當時,矩形ABCD的周長最大為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移動過程中始終保持DE∥BC,DF∥AC,
求:出發(fā)幾秒時,四邊形DFCE的面積為20cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l:y=﹣2x+m與x軸交于點A(﹣2,0),拋物線C1:y=x2+4x+3與x軸的一個交點為B(點B在點A的左側),過點B作BD垂直x軸交直線l于點 D.
(1)求m的值和點B的坐標;
(2)將△ABD繞點A順時針旋轉90°,點B,D的對應點分別為點E,F.
①點F的坐標為 ;
②將拋物線C1向右平移使它經過點F,此時得到的拋物線記為C2,直接寫出拋物線C2的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種商品,成本價為20元/千克,經市場調查,每天銷售量y(千克)與銷售單價x(元千克)之間的關系如圖所示,規(guī)定每千克售價不能低于30元,且不高于80元.
(1)直接寫出y與x之間的函數(shù)關系式;
(2)如果該超市銷售這種商品每天獲得3900元的利潤,那么該商品的銷售單價為多少元?
(3)設每天的總利潤為w元,當銷售單價定為多少元時,該超市每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線.
(2)過點E作EH⊥AB于點H,求證:CD=HF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當 AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著經濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注,某校學生會為了解節(jié)能減排、垃圾分類知識
的普及情況,隨機調查了部分學生,調查結果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結果繪制成下面兩個統(tǒng)計圖.
(1)本次調查的學生共有__________人,估計該校1200 名學生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(﹣1,0),點C(0,5),另拋物線經過點(1,8),M為它的頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),所調查的部分數(shù)據(jù)如表:
銷售單價(元) | 60 | 65 | 70 | |
銷售量(件) | 60 | 55 | 50 |
(1)求出與之間的函數(shù)表達式;
(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少?
(3)銷售單價定為多少元時,該商場獲得的利潤恰為元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com