【題目】如圖,點(diǎn),在直線.拋物線與線段圍成封閉圖形(包括邊界),則內(nèi)的整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))最多有(

A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)

【答案】C

【解析】

根據(jù)直線的解析式先判斷出線段AB上的整數(shù)點(diǎn)個(gè)數(shù),因?yàn)閽佄锞必過,且拋物線要與圍成封閉圖形,則當(dāng),圖像過點(diǎn)時(shí),中的整數(shù)點(diǎn)最多;當(dāng),圖像過點(diǎn)時(shí),中的整數(shù)點(diǎn)最多,分別求出拋物線的解析式,再在網(wǎng)格圖上畫出圖像,即可求出答案.

解:將A、B兩點(diǎn)的縱坐標(biāo)代入可求得,,

-5-4、-3-2、-1、01、2、3分別代入x中,可得y的值分別為5、4、3、、2、、1,則線段上的整數(shù)點(diǎn)有,,,

必過,且拋物線要與圍成封閉圖形,則

當(dāng),圖像過點(diǎn)時(shí),,此時(shí)中的整數(shù)點(diǎn)最多;

當(dāng),圖像過點(diǎn)時(shí),,此時(shí)中的整數(shù)點(diǎn)最多;

分別畫出圖像,根據(jù)整數(shù)刻度畫出網(wǎng)格,如下圖所示,

當(dāng)內(nèi)的整數(shù)點(diǎn)共有6個(gè),

當(dāng),內(nèi)的整數(shù)點(diǎn)共有5個(gè),

內(nèi)的整數(shù)點(diǎn)最多有6個(gè).

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B在第一象限,BAx軸于點(diǎn)A,反比例函數(shù)yx0)的圖象與線段AB相交于點(diǎn)C,C是線段AB的中點(diǎn),點(diǎn)C關(guān)于直線yx的對稱點(diǎn)C'的坐標(biāo)為(m,6)(m6),若△OAB的面積為12,則k的值為( 。

A.4B.6C.8D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)yax24axca0)的圖像與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,DHx軸于HAC交于點(diǎn)E.連接CDBC、BE.若SCBESABE23

1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;

2)連結(jié)BD,是否存在數(shù)值a,使得∠CDB=∠BAC?若存在,請求出a的值;若不存在,請說明理由;

3)若AC恰好平分∠DCB,求二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),與軸交于點(diǎn),(點(diǎn)在點(diǎn)左側(cè)).直線與拋物線的對稱軸交于點(diǎn)

1)求拋物線的對稱軸;

2)直接寫出點(diǎn)的坐標(biāo);

3)點(diǎn)與點(diǎn)關(guān)于拋物線的對稱軸對稱,過點(diǎn)軸的垂線與直線交于點(diǎn),若,結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,⊙M過坐標(biāo)原點(diǎn)O且分別交x軸、y軸于點(diǎn)A,B,點(diǎn)C為第一象限內(nèi)⊙M上一點(diǎn).若點(diǎn)A6,0),∠BCO30°

1)求點(diǎn)B的坐標(biāo);

2)若點(diǎn)D的坐標(biāo)為(-2,0),試猜想直線DB與⊙M的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,扇形的半徑為3,面積為,點(diǎn)的中點(diǎn),連接,

1)求證:四邊形是菱形;

2)如圖2,,繞點(diǎn)旋轉(zhuǎn),與,分別交于點(diǎn)(點(diǎn)與點(diǎn)均不重合),與交于兩點(diǎn).

①求的值;

②如圖2,連接,若的度數(shù)是定值,則直接寫出的度數(shù);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知△ABC中,AB=10cm,AC=8cmBC=6cm.如果點(diǎn)PB出發(fā)沿BA方向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)QA出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s.連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問題:

1)當(dāng)t為何值時(shí),PQ∥BC

2)設(shè)△AQP面積為S(單位:cm2),當(dāng)t為何值時(shí),S取得最大值,并求出最大值.

3)是否存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時(shí)t的值;若不存在,請說明理由.

4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t,使四邊形AQPQ′為菱形?若存在,求出此時(shí)菱形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,軸分別交于點(diǎn),,與反比例函數(shù)圖象交于點(diǎn),過點(diǎn)軸的垂線交該反比例函數(shù)圖象于點(diǎn)

求點(diǎn)的坐標(biāo).

①求的值.

②試判斷點(diǎn)與點(diǎn)是否關(guān)于原點(diǎn)成中心對稱?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx的二次函數(shù),該函數(shù)的圖象經(jīng)過點(diǎn)A(05)、B(1,2)、C(32)

1)求該二次函數(shù)的表達(dá)式,畫出它的大致圖象并標(biāo)注頂點(diǎn)及其坐標(biāo);

2)結(jié)合圖象,回答下列問題:

①當(dāng)1≤x≤4時(shí),y的取值范圍是   ;

②當(dāng)m≤x≤m+3時(shí),求y的最大值(用含m的代數(shù)式表示);

③是否存在實(shí)數(shù)mnm≠n),使得當(dāng)m≤x≤n時(shí),m≤y≤n?若存在,請求出m、n;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案