如圖,在斜邊長為1的等腰直角三角形OAB中,作內(nèi)接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作內(nèi)接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作內(nèi)接正方形A3B3C3D3;……;依次作下去,則第n個(gè)正方形AnBnCnDn的邊長是【   】
A.B.C.D.
B。
尋找規(guī)律:∵等腰直角三角形OAB中,∠A=∠B=450,
∴△AA1C1和△BB1D1都是等腰直角三角形!郃C1=A1C1,BD1=B1D1。
又∵正方形A1B1C1D1中,A1C1=C1D1=B1D1=A1B1,∴AC1=C1D1=D1B。
又∵AB=1,∴C1D1=,即正方形A1B1C1D1的邊長為。
同理,正方形A2B2C2D2的邊長為,正方形A3B3C3D3的邊長為,……正方形AnBnCnDn的邊長為。故選B。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線.
(1)三角形有   條面積等分線,平行四邊形有    條面積等分線;
(2)如圖①所示,在矩形中剪去一個(gè)小正方形,請畫出這個(gè)圖形的一條面積等分線;
(3)如圖②,四邊形ABCD中,AB與CD不平行,AB≠CD,且SABC<SACD,過點(diǎn)A畫出四邊形ABCD的面積等分線,并寫出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖□ABCD中,AE平分交BC于E,EF∥AB交AD于F,試問:

(1)四邊形ABEF是什么圖形?請說明理由;
(2)當(dāng)∠B為多少度數(shù)時(shí),四邊形AECD是等腰梯形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.
(1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;
(2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線段BC的中點(diǎn);
(3)如圖2,在(2)的條件下,求折痕FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),在矩形ABCD中,把∠B、∠D分別翻折,使點(diǎn)B、D分別落在對角線BC上的點(diǎn)E、F處,折痕分別為CM、AN.
(1)求證:△AND≌△CBM.
(2)請連接MF、NE,證明四邊形MFNE是平行四邊形,四邊形MFNE是菱形嗎?請說明理由?
(3)P、Q是矩形的邊CD、AB上的兩點(diǎn),連結(jié)PQ、CQ、MN,如圖(2)所示,若PQ=CQ,PQ∥MN。且AB=4,BC=3,求PC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖矩形ABCD中,對角線AC、BD相交于點(diǎn)O,若AB=1,∠AOB=60°,則BC=___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD的邊長為8,正方形EFGH的邊長為3,正方形EFGH可在線段AD上滑動. EC交AD于點(diǎn)M. 設(shè)AF=x,F(xiàn)M=y,△ECG的面積為s.
(1)求y與x之間的關(guān)系;
(2)求s與x之間的關(guān)系;
(3)求s的最大值和最小值;
(4)若放寬限制條件,使線段FG可在射線AD上滑動,直接寫出s與x之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在菱形ABCD中,,AD的垂直平分線交對角線BD于點(diǎn)P,垂足為E,連接CP,則________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將兩張長方形紙片如圖所示擺放,使其中一張長方形紙片的一個(gè)頂點(diǎn)恰好落在另一張長方形紙片的一條邊上,已知∠BEF=30°,則∠CMF=________°.

查看答案和解析>>

同步練習(xí)冊答案