【題目】小林在學習完一次函數(shù)與反比例函數(shù)的圖象與性質后,對函數(shù)圖象與性質研究饒有興趣,便想著將一次函數(shù)與反比例函數(shù)的解析式進行組合研究.他選取特殊的一次函數(shù)與反比例函數(shù),相加后,得到一個新的函數(shù).已知,這個新函數(shù)滿足:當時,;當時,.
(1)求出小林研究的這個組合函數(shù)的解析式;
(2)小林依照列表、描點、連線的方法在給定的平面直角坐標系內畫出了該函數(shù)圖象的一部分,請你在圖中補全小林未畫完的部分,并根據(jù)圖象,寫出該函數(shù)圖象的一條性質;
(3)請根據(jù)你所畫的函數(shù)圖象,利用所學函數(shù)知識,直接寫出不等式的解集.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一動點從半徑為2的上的點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;接著又從點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;間的距離是________;…按此規(guī)律運動到點處,則點與點間的距離是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線經過點,現(xiàn)將拋物線沿軸翻折,并向左平移1個單位長度后得到物線.
(1)求拋物線的解析式.
(2)若拋物線與軸交于,兩點(點在點右側),點在拋物線對稱軸上一點,為坐標原點,則拋物線上是否存在點,使以,,,為頂點的四邊形是干行四邊形?若存在,求出點的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與x軸相交于點A、點B,與y軸交于點C(0,3),對稱軸為直線x=1,交x軸于點D,頂點為點E.
(1)求該拋物線的解析式;
(2)連接AC,CE,AE,求△ACE的面積;
(3)如圖2,點F在y軸上,且OF=,點N是拋物線在第一象限內一動點,且在拋物線對稱軸右側,連接ON交對稱軸于點G,連接GF,若GF平分∠OGE,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一段拋物線:記為,它與軸交于兩點,;將繞旋轉180°得到,交軸于;將繞旋轉180°得到,交軸于如此變換進行下去,若點在這種連續(xù)變換的圖象上,則的值為( )
A.2B.3C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與軸交于點、,與軸交于點,直線經過點、.
(1)求拋物線的表達式;
(2)過點的直線交拋物線于點,交直線于點,連接,當直線平分的面積時,求點的坐標;
(3)如圖所示,把拋物線位于軸上方的圖象沿軸翻折,當直線與翻折后的整個圖象只有三個交點時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉90°,180°,270°后形成的圖形.若∠BAD=60°,AB=2,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形OABC的邊長為2,∠AOC=60°,點D為AB邊上的一點,經過O,A,D三點的拋物線與x軸的正半軸交于點E,連結AE交BC于點F,當DF⊥AB時,CE的長為__.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com