【題目】已知購買1個足球和1個籃球共需130元,購買2個足球和3個籃球共需340元.
(1)求每個足球和每個籃球的售價;
(2)如果某校計劃購買這兩種球共54個,總費用不超過4000元,問最多可買多少個籃球?
【答案】
(1)解:設(shè)每個籃球x元,每個足球y元,
由題意得, ,
解得: ,
答:每個籃球80元,每個足球50元
(2)解:設(shè)買m個籃球,則購買(54﹣m)個足球,
由題意得,80m+50(54﹣m)≤4000,
解得:m≤ ,
∵m為整數(shù),
∴m最大取43,
答:最多可以買43個籃球
【解析】(1)設(shè)每個籃球x元,每個足球y元,根據(jù):①1個足球費用+1個籃球費用=130元,②2個足球費用+3個籃球費用=340元,列方程組求解可得;(2)設(shè)買m個籃球,則購買(54﹣m)個足球,根據(jù):籃球總費用+足球的總費用≤4000,列不等式求解可得.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+1與x軸的正半軸交于點A和點B,與y軸交于點C,且OB=3OC,點P是第一象限內(nèi)的點,連接BC,△PBC是以BC為斜邊的等腰直角三角形.
(1)求這個拋物線的表達式;
(2)求點P的坐標;
(3)點Q在x軸上,若以Q、O、P為頂點的三角形與以點C、A、B為頂點的三角形相似,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+ 的圖象與y軸交于點A(0,4),與x軸交于點B,C,點C坐標為(8,0),連AB,AC,點N在線段BC上運動(不與點B,C重合)過點N作NM∥AC,交AB于點M.
(1)判斷△ABC的形狀,并說明理由;
(2)當以點A,M,N為頂點的三角形與以點A,B,O為頂點的三角形相似時,求點N的坐標;
(3)當△AMN面積等于3時,直接寫出此時點N的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,A、B、C三點的坐標為( ,0)、(3 ,0)、(0,5),點D在第一象限,且∠ADB=60°,則線段CD的長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1、2是底面半徑為1cm,母線長為2cm的圓柱體和圓錐體模型.現(xiàn)要用長為2πcm,寬為4cm的長方形彩紙(如圖3)裝飾圓柱、圓錐模型表面.已知一個圓柱和一個圓錐模型為一套,長方形彩紙共有122張,用這些紙最多能裝飾多少套模型呢? 老師:“長方形紙可以怎么裁剪呢?”
學(xué)生甲:“可按圖4方式裁剪出2張長方形.”
學(xué)生乙:“可按圖5方式裁剪出6個小圓.”
學(xué)生丙:“可按圖6方式裁剪出1個大圓和2個小圓.”
老師:盡管還有其他裁剪方法,但為裁剪方便,我們就僅用這三位同學(xué)的裁剪方法!
(1)計算:圓柱的側(cè)面積是cm2 , 圓錐的側(cè)面積是cm2 .
(2)1張長方形彩紙剪拼后最多能裝飾個圓錐模型;5張長方形彩紙剪拼后最多能裝飾個圓柱體模型.
(3)求用122張彩紙對多能裝飾的圓錐、圓柱模型套數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,AB=AC.過A點的直線a從與邊AC重合的位置開始繞點A按順時針方向旋轉(zhuǎn)角θ,直線a交BC邊于點P(點P不與點B、點C重合),△BMN的邊MN始終在直線a上(點M在點N的上方),且BM=BN,連接CN.
(1)當∠BAC=∠MBN=90°時, ①如圖a,當θ=45°時,∠ANC的度數(shù)為;
(2)②如圖b,當θ≠45°時,①中的結(jié)論是否發(fā)生變化?說明理由;
(3)如圖c,當∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數(shù)量關(guān)系,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐際系xOy中,當m,n滿足mn=k(k為常數(shù),且m>0,n>0)時,就稱點(m,n)為“等積點”.
(1)若k=4,求函數(shù)y=x﹣4的圖象上滿足條件的,“等積點”坐標;
(2)若直線y=﹣x+b(b>0)與x軸、y軸分別交于點A和點B,并且直線有且只有一個“等積點”,過點A與y軸平行的直線和過點B與x軸平行的直線交于點C,點E是直線AC上的“等積點”,點F是直線BC上的“等積點”,若△OEF的面積為k2+ k﹣ ,求EF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】代數(shù)式ax2+bx+c(a≠0,a,b,c是常數(shù))中,x與ax2+bx+c的對應(yīng)值如下表:
x | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | |||
ax2+bx+c | ﹣2 | ﹣ | 1 | 2 | 1 | ﹣ | ﹣2 |
請判斷一元二次方程ax2+bx+c=0(a≠0,a,b,c是常數(shù))的兩個根x1 , x2的取值范圍是下列選項中的( )
A.﹣ <x1<0, <x2<2
B.﹣1<x1<﹣ ,2<x2<
C.﹣ <x1<0,2<x2<
D.﹣1<x1<﹣ , <x2<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點D在BC邊上,有下列三個關(guān)系式:
① BAC=90°,② = ,③AD⊥BC.
選擇其中兩個式子作為已知,余下的一個作為結(jié)論,寫出已知,求證,并證明.
已知:
求證:
證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com