如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(zhuǎn)(點P對應(yīng)點P′),當AP旋轉(zhuǎn)至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
(3)當,BP′=時,求線段AB的長.
解:(1)證明:∵AP′是AP旋轉(zhuǎn)得到,∴AP=AP′!唷螦PP′=∠AP′P。
∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°。
又∵∠BPC=∠APP′(對頂角相等)!唷螩BP=∠ABP。
(2)證明:如圖,過點P作PD⊥AB于D,
∵∠CBP=∠ABP,∠C=90°,∴CP=DP。
∵P′E⊥AC,∴∠EAP′+∠AP′E=90°。
又∵∠PAD+∠EAP′=90°,
∴∠PAD=∠AP′E。
在△APD和△P′AE中,
∵,
∴△APD≌△P′AE(AAS)!郃E=DP!郃E=CP。
(3)∵,∴設(shè)CP=3k,PE=2k,則AE=CP=3k,AP′=AP=3k+2k=5k。
在Rt△AEP′中,,
∵∠C=90°,P′E⊥AC,∴∠CBP+∠BPC=90°,∠EP′P+∠P′PE=90°。
∵∠BPC=∠EPP′(對頂角相等),∴∠CBP=∠P′PE。
又∵∠BAP′=∠P′EP=90°,∴△ABP′∽△EPP′。
∴。即!。
在Rt△ABP′中,,即。
解得AB=10
解析試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AP=AP′,根據(jù)等邊對等角的性質(zhì)可得∠APP′=∠AP′P,再根據(jù)等角的余角相等證明即可。
(2)過點P作PD⊥AB于D,根據(jù)角平分線上的點到角的兩邊的距離相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角邊”證明△APD和△P′AE全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=DP,從而得證。
(3)設(shè)CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根據(jù)相似三角形對應(yīng)邊成比例列式求出,然后在Rt△ABP′中,利用勾股定理列式求解即可。
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B?A,B?C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當點N到達終點C時,點M也隨之停止運動.設(shè)運動時間為t秒.
(1)若a=4厘米,t=1秒,則PM= _________ 厘米;
(2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
(4)是否存在這樣的矩形:在運動過程中,存在某時刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,梯形ABCD是一個攔河壩的截面圖,壩高為6米.背水坡AD的坡角為,為了提高河壩的抗洪能力,防汛指揮部決定加固河壩,若壩頂CD加寬0.8米,新的背水坡EF的坡度為1:1.4.河壩總長度為500米.
(1)求完成該工程需要多少立方米方土?
(2)某工程隊在加固600立方米土后,采用新的加固模式,這樣每天加固方數(shù)是原來的2倍,結(jié)果只用11天完成了大壩加固的任務(wù).請你求出該工程隊原來每天加固多少立方米土?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上一點(不與點A、B重合),連結(jié)CO并延長CO交⊙O于點D,連結(jié)AD.
(1)求弦長AB的長度;(結(jié)果保留根號);
(2)當∠D=20°時,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,在正方形ABCD中,AB=1,點E在AB延長線上,聯(lián)結(jié)CE、DE,DE交邊BC于點F,設(shè)BE,CF.
圖1
(1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(2)如圖2,對角線AC、BD的交點記作O,直線OF交線段CE于點G,求證:;
圖2
(3)在(2)的條件下,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線l分別與x軸、y軸交于A、B兩點,與雙曲線(a≠0,x>0)分別交于D、E兩點.
(1)若點D的坐標為(4,1),點E的坐標為(1,4):
① 分別求出直線l與雙曲線的解析式;(3分)
② 若將直線l向下平移m(m>0)個單位,當m為何值時,直線l與雙曲線有且只有一個交點?(4分)
(2)假設(shè)點A的坐標為(a,0),點B的坐標為(0,b),點D為線段AB的n等分點,請直接寫出b的值.(2分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉(zhuǎn)中心轉(zhuǎn)動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).
(1)當PE⊥AB,PF⊥BC時,如圖1,則的值為 ;
(2)現(xiàn)將三角板繞點P逆時針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
定義:如圖1,點C在線段AB上,若滿足AC2=BC•AB,則稱點C為線段AB的黃金分割點.
如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點D.
(1)求證:點D是線段AC的黃金分割點;
(2)求出線段AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
“橫看成嶺側(cè)成峰”從數(shù)學(xué)的角度解釋為( )
A.從不同的方向觀察同一建筑物時,看到的圖形不一樣 |
B.從同一方向觀察同一建筑物時,看到的圖形不一樣 |
C.從同一的方向觀察不同的建筑物時,看到的圖形一樣 |
D.以上答案都不對 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com