精英家教網 > 初中數學 > 題目詳情

如圖1,在正方形ABCD中,AB=1,點E在AB延長線上,聯(lián)結CE、DE,DE交邊BC于點F,設BE,CF

圖1
(1)求關于的函數解析式,并寫出的取值范圍;
(2)如圖2,對角線AC、BD的交點記作O,直線OF交線段CE于點G,求證:;

圖2
(3)在(2)的條件下,當時,求的值.

(1)  的取值范圍是
(2)略.
(3)

解析試題分析:(1)由正方形ABCD可得, ,則  ,

(2)由(1)的結論得:
    ,即 ,
根據正方形ABCD的性質得,∴△OCF∽△EAC
.
(3)在中,利用勾股定理得
是公共角, , ∴根據相似三角形的性質三邊對應成比例得      ∴
解得,
試題解析:(1)正方形ABCD中,DC∥AB,
, 即.            (2分)
  的取值范圍是;                (2分)
(2)∵,
                            (2分)
又∵
∴△OCF∽△EAC                              (2分)
                              (1分)
(3)在中,               (1分)
,是公共角,
∴△OCG∽ △ECA                           (2分)

,   解得,   (2分)
經檢驗,都是滿足方程的解
答(略)
考點:1.相似三角形的判定。2.相似三角形的性質。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

(1)如圖所示,如果你的位置在點A,你能看到后面那座高大的建筑物嗎?為什么?

(2)如果兩樓之間相距MN=m,兩樓的高各為10m和30m,則當你至少與M樓相距多少m時,才能看到后面的N樓?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.

(1)當點P在線段AB上時,求證:△APQ∽△ABC;
(2)當△PQB為等腰三角形時,求AP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.

(1)當點P在線段AB上時,求證:△AQP∽△ABC;
(2)當△PQB為等腰三角形時,求AP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖(1),∆ABC為等邊三角形,AB=6,在直角三角板DEF中∠F=90°,∠FDE=60°,點D在邊BC上運動,邊DF始終經過點A,DE交AC于點G.

(1)求證:①∠BAD=∠CDG
②∆ABD∽∆DCG
(2)設BD=x,若CG=,求x的值;
(3)如圖2,當D運動到BC中點時,點P為線段AD上一動點,連接CP,將線段CP繞著點C逆時針旋轉60°得到CP' ,連接BP',DP',

①求∠CBP'的度數;②求DP'的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(點P對應點P′),當AP旋轉至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.

(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
(3)當,BP′=時,求線段AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知點P為線段AB的黃金分割點(AP>BP),且AB=2,求BP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

請在圖中補全坐標系及缺失的部分,并在橫線上寫恰當的內容。圖中各點坐標如下:A(1,0),B(6,0),C(1,3),D(6,2)。線段AB上有一點M,使△ACM∽△BDM,且相似比不等于1。求出點M的坐標并證明你的結論。

解:M(      
證明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM=   度。
∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC(   ),∠BDM=∠BMD(同理),
∴∠ACM= (180°-   ) =45°。 ∠BDM=45°(同理)。
∴∠ACM=∠BDM。
在△ACM與△BDM中,,
∴△ACM∽△BDM(如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似)。

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

下列幾何體中,主視圖是三角形的是(  )

A. B. C. D.

查看答案和解析>>

同步練習冊答案