【題目】已知,△ABC為等邊三角形,點D為AC上的一個動點,點E為BC延長線上一點,且BD=DE.
(1)如圖1,若點D在邊AC上,猜想線段AD與CE之間的關(guān)系,并說明理由;
圖1
(2)如圖2,若點D在AC的延長線上,(1)中的結(jié)論是否成立,請說明理由.
圖2
【答案】(1)詳見解析;(2)詳見解析
【解析】
(1)求出∠E=∠CDE,推出CD=CE,根據(jù)等腰三角形性質(zhì)求出AD=DC,即可得出答案;解:(1)AD=CE,理由:過D作DF∥AB交BC于E,
(2)(1)中的結(jié)論仍成立,如圖3,過點D作DP∥BC,交AB的延長線于點P,證明△BPD≌△DCE,得到PD=CE,即可得到AD=CE.
解:(1)AD=CE,
證明:如圖1,過點D作DP∥BC,交AB于點P,
∵△ABC是等邊三角形,
∴△APD也是等邊三角形,
∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,
∵DB=DE,
∴∠DBC=∠DEC,
∵DP∥BC,
∴∠PDB=∠CBD,
∴∠PDB=∠DEC,
又∠BPD=∠A+∠ADP=120°,∠DCE=∠A+∠ABC=120°,
即∠BPD=∠DCE,
在△BPD和△DCE中,∠PDB=∠DEC,∠BPD=∠DCE,DB=DE,
∴△BPD≌△DCE,
∴PD=CE,
∴AD=CE;
(2)如圖3,過點D作DP∥BC,交AB的延長線于點P,
∵△ABC是等邊三角形,
∴△APD也是等邊三角形,
∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,
∵DB=DE,
∴∠DBC=∠DEC,
∵DP∥BC,
∴∠PDB=∠CBD,
∴∠PDB=∠DEC,
在△BPD和△DCE中,
∴△BPD≌△DCE,
∴PD=CE,
∴AD=CE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用-1來表示的小數(shù)部分,事實上,小明的表示方法是有道理的,因為<<,所以的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.請據(jù)此解答:
(1)的整數(shù)部分是 ,小數(shù)部分是 .
(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求a+b-的值;
(3)若設(shè)2+的整數(shù)部分為x,小數(shù)部分為y,求(y-x)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A、B兩點,點A坐標(biāo)為,點B坐標(biāo)為,OA與x軸正半軸夾角的正切值為,直線AB交y軸于點C,過C作y軸的垂線,交反比例函數(shù)圖象于點D,連接OD、BD.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)連接BD,求出BDC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形 ABCD 中,AB=3,BC=4,E、F 是對角線 AC 上的兩個動點,分 別從 A、C 同時出發(fā)相向而行,速度均為每秒 1 個單位長度,運動時間為 t 秒,其中 0 t 5 .
(1)若 G,H 分別是 AB,DC 中點,求證:四邊形 EGFH 是平行四邊形(E、F 相遇時除外);
(2)在(1)條件下,若四邊形 EGFH 為矩形,求 t 的值;
(3)若 G,H 分別是折線 A-B-C,C-D-A 上的動點,與 E,F 相同的速度同時出發(fā),若 四邊形 EGFH 為菱形,求 t 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠流長,中華漢字,寓意深廣。為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校1500名學(xué)生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績分布情況,隨機抽取了部分學(xué)生的成績作為樣本進行整理,得到下列不完整的統(tǒng)計圖表. 請你根據(jù)表中提供的信息,解答下列問題:
成績x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
(1)此次調(diào)查的樣本容量為_____;
(2)在表中:=_____,=______;
(3)補全頻數(shù)分布直方圖;
(4)若成績在80分以上(包括80分)的為“A”級,則該校參加這次比賽的1500名學(xué)生中,成績?yōu)?/span>“A”級的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線分別交x軸,y軸于A、B兩點,點A關(guān)于原點O的對稱點為點D,點C在第一象限,且四邊形ABCD為平行四邊形.
(1)在圖①中,畫出平行四邊形ABCD,并直接寫出C、D兩點的坐標(biāo);
(2)動點P從點C出發(fā),沿線段CB以每秒1個單位的速度向終點B運動;同時,動點Q從點A出發(fā),沿線段AD以每秒1個單位的速度向終點D運動,設(shè)點P運動的時間為t秒.
①若△POQ的面積為3,求t的值;
②點O關(guān)于B點的對稱點為M,點C關(guān)于x軸的對稱點為N,過點P作PH⊥x軸,問MP+PH+NH是否有最小值,如果有求出相應(yīng)的點P的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=2,BC=1.5,矩形在直線上繞其右下角的頂點B向右第一次旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右第二次旋轉(zhuǎn)90°至圖②位置,…,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次后,頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com