【題目】已知拋物線C1:y=(x-1)2+1與y軸交于點(diǎn)A,過點(diǎn)A與點(diǎn)(1,3)的直線與C1交于點(diǎn)B
(1) 求直線AB的函數(shù)表達(dá)式
(2) 如圖1,若點(diǎn)P為直線AB下方的C1上一點(diǎn),求點(diǎn)P到直線AB的距離的最大值
(3) 如圖2,將直線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后恰好經(jīng)過C1的頂點(diǎn)C,沿射線AC的方向平移拋物線C1得到拋物線C2,C2的頂點(diǎn)為D,兩拋物線相交于點(diǎn)E.設(shè)交點(diǎn)E的橫坐標(biāo)為m.若∠AED=90°,求m的值
【答案】(1) y=x+2(2)(3)m=1+
【解析】(1) y=x+2
(2) 設(shè)P(a,a2-2a+2)
過點(diǎn)P作PQ∥y交軸交AB于Q
∴Q(a,a+2)
∴PQ=(a+2)-(a2-2a+2)=-a2+3a=
當(dāng)時(shí),PQ有最大值為
過點(diǎn)P作PM⊥AB于M
∵直線AB與豎直方向的夾角為45°
∴△PQM為等腰直角三角形
∴PM=
即P到AB的距離的最大值為
方法2:P在平行于AB且于拋物線相切的切點(diǎn)處
(3) 直線AD的解析式為y=-x+2
設(shè)D(n,-n+2)
∴C2:y=(x-n)2-n+2
∵E(m,m2-2m+2)同時(shí)也在C2上
∴(m-n)2-n+2=m2-2m+2
整理得:(2m-n)(n-1)=0,n=2m或n=1(舍去)
∴D(2m,-2m+2)
接下來使用K字型
過點(diǎn)E作MN∥x軸交y軸于M,過點(diǎn)D作DN⊥MN于N
∴△DNE∽△EMA
∴DN·AM=ME·EN
即[(m2-2m+2)-(-2m+2)]·[(m2-2m+2)-2]=m2,m2-2m-1=0
解得
∵m>0
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形 的對(duì)角線 , 相交于點(diǎn) .
(1)如圖1, , 分別是 , 上的點(diǎn), 與 的延長線相交于點(diǎn) .若 ,求證: ;
(2)如圖2, 是 上的點(diǎn),過點(diǎn) 作 ,交線段 于點(diǎn) ,連結(jié) 交 于點(diǎn) ,交 于點(diǎn) .若 ,
①求證: ;
②當(dāng) 時(shí),求 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90 ,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E,且AB=6cm,則△BED的周長是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,結(jié)果正確的是( )
A.a3a4=a12
B.a10÷a2=a5
C.a2+a3=a5
D.4a﹣a=3a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠ACB=90°,點(diǎn)E為AC的中點(diǎn),CD⊥BE交AB于D點(diǎn),交BE于點(diǎn)F
(1) 如圖1,若AC=2BC,求證:AD=2BD
(2) 如圖2,若∠ACD=30°,連AF并延長交BC于G點(diǎn),求的值
(3) 在(1)的條件下,若AC=4,以AB為邊作等腰直角三角形ABM(點(diǎn)M與點(diǎn)C在AB異側(cè)),直接寫出CM的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】H7N9型禽流感是一種新型禽流感,于2013年3月底在上海和安徽兩地率先發(fā)現(xiàn).H7N9型禽流感是全球首次發(fā)現(xiàn)的新亞型流感病毒,其細(xì)胞的直徑約為0.000000106m,用科學(xué)記數(shù)法表示這個(gè)數(shù)是( )
A.0.106×10﹣6m
B.0.106×106m
C.1.06×10﹣7m
D.1.06×107m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)隊(duì)欲從甲、乙兩名優(yōu)秀選手中選一名參加全省射擊比賽,該運(yùn)動(dòng)隊(duì)預(yù)先對(duì)這兩名選手進(jìn)行了8次測(cè)試,測(cè)得的成績(jī)?nèi)绫恚?/span>
次數(shù) | 選手甲的成績(jī)(環(huán)) | 選手乙的成績(jī)(環(huán)) |
1 | 9.6 | 9.5 |
2 | 9.7 | 9.9 |
3 | 10.5 | 10.3 |
4 | 10.0 | 9.7 |
5 | 9.7 | 10.5 |
6 | 9.9 | 10.3 |
7 | 10.0 | 10.0 |
8 | 10.6 | 9.8 |
根據(jù)統(tǒng)計(jì)的測(cè)試成績(jī),請(qǐng)你運(yùn)用所學(xué)過的統(tǒng)計(jì)知識(shí)作出判斷,派哪一位選手參加比賽更好?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為BC的中點(diǎn),E,F分別是AB,AC上的點(diǎn),且DE⊥DF.
求證:BE+CF>EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com