在二次函數(shù)的圖像中,若的增大而增大,則的取值范圍是
A.B.C.D.
故選C。
∵二次函數(shù)的開口向下,
∴所以在對(duì)稱軸的左側(cè)y隨x的增大而增大。
∵二次函數(shù)的對(duì)稱軸是,
。故選A。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線與x、y軸分別交于點(diǎn)A、C.拋物線的圖象經(jīng)過(guò)A、C和點(diǎn)B(1,0).

(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AC的距離DE最大時(shí),求出點(diǎn)D的坐標(biāo),并求出最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,已知點(diǎn)B的坐標(biāo)為(3,0).

(1)求a的值和拋物線的頂點(diǎn)坐標(biāo);
(2)分別連接AC、BC.在x軸下方的拋物線上求一點(diǎn)M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),d=|AN﹣CN|.探究:是否存在一點(diǎn)N,使d的值最大?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo)和d的最大值;若不存在,請(qǐng)簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三角形ABC是以BC為底邊的等腰三角形,點(diǎn)A、C分別是一次函數(shù)的圖象與y軸的交點(diǎn),點(diǎn)B在二次函數(shù)的圖象上,且該二次函數(shù)圖象上存在一點(diǎn)D使四邊形ABCD能構(gòu)成平行四邊形.

(1)試求b,c的值,并寫出該二次函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)P從A到D,同時(shí)動(dòng)點(diǎn)Q從C到A都以每秒1個(gè)單位的速度運(yùn)動(dòng),問(wèn):
①當(dāng)P運(yùn)動(dòng)到何處時(shí),有PQ⊥AC?
②當(dāng)P運(yùn)動(dòng)到何處時(shí),四邊形PDCQ的面積最小?此時(shí)四邊形PDCQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過(guò)第三象限。
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說(shuō)明理由;
(3)若直線經(jīng)過(guò)點(diǎn)B,且于該拋物線交于另一點(diǎn)C(),求當(dāng)x≥1時(shí)y1的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A,B,與軸交于點(diǎn)C。過(guò)點(diǎn)C作CD∥x軸,交拋物線的對(duì)稱軸于點(diǎn)D,連結(jié)BD。已知點(diǎn)A坐標(biāo)為(-1,0)。

(1)求該拋物線的解析式;
(2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,則△ABC的面積為             

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)P是直線上的點(diǎn),過(guò)點(diǎn)P的另一條直線交拋物線于A、B兩點(diǎn).

(1)若直線的解析式為,求A、B兩點(diǎn)的坐標(biāo);
(2)①若點(diǎn)P的坐標(biāo)為(-2,),當(dāng)PA=AB時(shí),請(qǐng)直接寫出點(diǎn)A的坐標(biāo);
②試證明:對(duì)于直線上任意給定的一點(diǎn)P,在拋物線上都能找到點(diǎn)A,使得PA=AB成立.
(3)設(shè)直線軸于點(diǎn)C,若△AOB的外心在邊AB上,且∠BPC=∠OCP,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

請(qǐng)選擇一組你喜歡的a、b、c的值,使二次函數(shù)y=ax2+bx+c(a≠0)同時(shí)滿足下列條件:①開口向下;②當(dāng)x<-1時(shí),y隨x的增大而增大,當(dāng)x>-1時(shí),y隨x的增大而減小,這樣的函數(shù)關(guān)系式可以是     

查看答案和解析>>

同步練習(xí)冊(cè)答案