精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtABC中,∠BAC=90°,且BA=9,AC=12,點D是斜邊BC上的一個動點,過點D分別作DEAB于點EDFAC于點F,點G為四邊形DEAF對角線交點,則線段GF的最小值為_______.

【答案】

【解析】

由勾股定理求出BC的長,再證明四邊形DEAF是矩形,可得EF=AD,根據垂線段最短和三角形面積即可解決問題.

解:∵∠BAC=90°,且BA=9,AC=12,
∴在RtABC中,利用勾股定理得:BC===15,
DEAB,DFAC,∠BAC=90°
∴∠DEA=DFA=BAC=90°,
∴四邊形DEAF是矩形,
EF=AD,GF=EF
∴當ADBC時,AD的值最小,
此時,ABC的面積=AB×AC=BC×AD,
AD===,
EF=AD=,因此EF的最小值為;

又∵GF=EF

GF=×=
故線段GF的最小值為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點A2 019的坐標為____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形中,,,點邊的中點,點邊上一動點(不與點重合),延長交射線于點,連接,

1)求證:四邊形是平行四邊形;

2)填空:

①當的值為_______時,四邊形是矩形;

②當的值為______時,四邊形是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠BAC=60° ,B=80° ,DE垂直平分ACBC于點D,AC于點E.

(1)求∠BAD的度數

(2)AB=10,BC=12,ABD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC的頂點都在方格線的交點(格點)上.

(1)將ABC繞C點按逆時針方向旋轉90°得到A′B′C′,請在圖中畫出A′B′C′.

(2)將ABC向上平移1個單位,再向右平移5個單位得到A″B″C″,請在圖中畫出A″B″C″.

(3)若將ABC繞原點O旋轉180°,A的對應點A1的坐標是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】瀘西某著名風景旅游景點于5 月1日前后相繼開放,為了更好的吸引游客前去游覽,某景點給出團體購買公園門票票價如下:

購票人數

1~50

51~100

100人以上

每人門票(元)

13元

11元

9元

今有甲、乙兩個旅行團,已知甲團人數少于50人,乙團人數不超過100人.若分別購票,兩團共計應付門票費1392元,若合在一起作為一個團體購票,總計應付門票費1080元.

(1)請你判斷乙團的人數是否也少于50人.

(2)求甲、乙兩旅行團各有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某文具店出售、兩種文具.文具每套元,文具每套元,該店開展促銷活動,向客戶提供兩種優(yōu)惠方案:

①買一套文具送一套文具.

文具和文具都按定價的付款.

現某客戶要到該店購買文具套,文具套(

)若該客戶按方案①購買需付款____________________元(用含的代數式表示);若該客戶按方案②購買需付款____________________元(用含的代數式表示)

)當時,通過計算說明按哪種方案購買較為合算.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形 ABCD 中,BAD,BCD=180°-α,BD 平分ABC

1)如圖,若α=90°,根據教材中一個重要性質直接可得 DA=CD,這個性質是 ;

2)問題解決:如圖,求證:AD=CD;

3)問題拓展:如圖,在等腰ABC 中,BAC=100°,BD 平分ABC,求證:BD+AD=BC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料:

在數學課上,老師請同學思考如下問題:如圖①,我們把一個四邊形的四邊中點依次連接起來得到的四邊形是平行四邊形嗎?

小敏在思考問題,有如下思路:連接

結合小敏的思路作答.

1)若只改變圖①中四邊形的形狀(如圖②),則四邊形還是平行四邊形嗎?說明理由;

(參考小敏思考問題方法)

2)如圖②,在(1)的條件下,若連接

①當滿足什么條件時,四邊形是矩形,寫出結論并證明;

②當滿足____時,四邊形是正方形.

查看答案和解析>>

同步練習冊答案