如圖所示,在邊長為2的正三角形ABC中,已知點P是三角形內任意一點,則點P到三角形的三邊距離之和PD+PE+PF等于( 。
A.
3
B.2
3
C.4
3
D.無法確定

連接AP、BP、CP,設等邊三角形的高為h
∵正三角形ABC邊長為2
∴h=
22-12
=
3

∵S△BPC=
1
2
BC•PD

S△APC=
1
2
AC•PE

S△APB=
1
2
AB•PF

∴S△ABC=
1
2
BC•PD+
1
2
AC•PE+
1
2
AB•PF

∵AB=BC=AC
∴S△ABC=
1
2
BC•(PD+PE+PF)
=
1
2
BC•h

∴PD+PF+PE=h=
3

故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

等腰三角形的頂角是120°,底邊上的高是3cm,則腰長為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,
(1)連接AQ、CP交于點M,則在P、Q運動的過程中,∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);
(2)何時△PBQ是直角三角形?
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知:∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為( 。
A.6B.12C.32D.64

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法中,正確的是( 。
A.等邊三角形的“三線合一”
B.有一個角是60°的三角形是等邊三角形
C.在直角三角形中,直角邊等于斜邊的一半
D.有兩個角相等的三角形是等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知AB=AC,∠APC=60°.
(1)求證:△ABC是等邊三角形;
(2)若BC=4
3
,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC是等邊三角形,點D是邊BC上(除B、C外)的任意一點,∠ADE=60°,且DE交△ABC外角∠ACF的平分線CE于點E
(1)求證:∠1=∠2;
(2)求證:AD=DE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC是等邊三角形,P是BC上任意一點,PD⊥AB,PE⊥AC,連接DE.記△ADE的周長為L1,四邊形BDEC的周長為L2,則L1與L2的大小關系是( 。
A.Ll=L2B.L1>L2C.L2>L1D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:等邊△ABC的邊長為a.
探究(1):如圖1,過等邊△ABC的頂點A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=
3
a;
探究(2):在等邊△ABC內取一點O,過點O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點D、E、F.
①如圖2,若點O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質得到兩個正確結論(不必證明):結論1. OD+OE+OF=
3
2
a;結論2. AD+BE+CF=
3
2
a;
②如圖3,若點O是等邊△ABC內任意一點,則上述結論1,2是否仍然成立?如果成立,請給予證明;如果不成立,請說明理由.

查看答案和解析>>

同步練習冊答案