【題目】如圖1,點(diǎn)C是⊙O中直徑AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)C作CD⊥AB交⊙O于點(diǎn)D,點(diǎn)M是直徑AB上一固定點(diǎn),作射線DM交⊙O于點(diǎn)N.已知AB=6cm,AM=2cm,設(shè)線段AC的長度為xcm,線段MN的長度為ycm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量的變化而變化的規(guī)律進(jìn)行了探索.
下面是小東的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 4 | 3.3 | 2.8 | 2.5 |
| 2.1 | 2 |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(2)在圖2中建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AC=MN時(shí),x的取值約為 cm.
【答案】(1)3;(2)見解析;()2.7.
【解析】
(1)如圖1-1中,連接OD、BD、AN,利用勾股定理求出DM,致力于相似三角形的性質(zhì)求出MN即可;
(2)利用描點(diǎn)法畫出函數(shù)圖象即可;
(3)利用圖象尋找圖象與直線y=x的交點(diǎn)的坐標(biāo)即可解決問題.
解:(1)如圖1﹣1中,連接OD,BD、AN.
∵AC=4,OA=3,
∴OC=1,
在Rt△OCD中,CD==,
在Rt△CDM中,DM==,
由△AMN∽△DMB,可得DMMN=AMBM,
∴MN=≈3,
故答案為3.
(2)函數(shù)圖象如圖所示,
(3)觀察圖象可知,當(dāng)AC=MN上,x的取值約為2.7.
故答案為2.7.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是邊長為8的等邊三角形,AD⊥BC下點(diǎn)D,DE⊥AB于點(diǎn)E
(1)求證:AE=3EB;
(2)若點(diǎn)F是AD的中點(diǎn),點(diǎn)P是BC邊上的動(dòng)點(diǎn),連接PE,PF,如圖2所示,求PE+PF的最小值及此時(shí)BP的長;
(3)在(2)的條件下,連接EF,若AD=,當(dāng)PE+PF取最小值時(shí),△PEF的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù) y=ax2+bx﹣(a+b)(a,b 是常數(shù),a≠0).
(1)判斷該二次函數(shù)圖象與 x 軸的交點(diǎn)的個(gè)數(shù),說明理由.
(2)若該二次函數(shù)圖象經(jīng)過 A(﹣1,4),B(0,﹣1),C(1,1)三個(gè)點(diǎn)中的其中兩個(gè)點(diǎn),求該二次函數(shù)的表達(dá)式.
(3)若 a+b<0,點(diǎn) P(2,m)(m>0)在該二次函數(shù)圖象上,求證:a>0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)若以AB為一邊向上作有一個(gè)角為30°的直角三角形ABC,在給出的直角坐標(biāo)系中作出所有的符合條件的六個(gè)三角形;
(3)將所作三角形中你認(rèn)為好計(jì)算的兩個(gè)C點(diǎn)的坐標(biāo)求出來或直接寫出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(-5,1),B(-1,1),C(-4,3).
(1)若△A1B1C1與△ABC關(guān)于y軸對稱,點(diǎn)A,B,C的對應(yīng)點(diǎn)分別為A1,B1,C1,請畫出△A1B1C1并寫出A1,B1,C1的坐標(biāo);
(2)若點(diǎn)P為平面內(nèi)不與C重合的一點(diǎn),△PAB與△ABC全等,請寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,能用AAS來判定△ACD≌△ABE需要添加的條件是( )
A.∠AEB=∠ADC,BE=CDB.AC=AB,∠B=∠C
C.AC=AB,AD=AED.∠AEB=∠ADC,∠B=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣2x+4的圖象分別與x軸、y軸交于點(diǎn)A,B.
(1)求△AOB的面積;
(2)在該一次函數(shù)圖象上有一點(diǎn)P到x軸的距離為6,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E是⊙O上任意一點(diǎn),且CD切⊙O于點(diǎn)D.
(1)試求∠AED的度數(shù).
(2)若⊙O的半徑為cm,試求△ADE面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的點(diǎn)P和圖形G,給出如下的定義:若在圖形G上存在一點(diǎn)Q ,使得P、Q之間的距離等于1,則稱P為圖形G的關(guān)聯(lián)點(diǎn).
(1)當(dāng)⊙O的半徑為1時(shí):
①點(diǎn), , 中,⊙O的關(guān)聯(lián)點(diǎn)有_____________________.
②直線經(jīng)過(0,1)點(diǎn),且與軸垂直,點(diǎn)P在直線上.若P是⊙O的關(guān)聯(lián)點(diǎn),求點(diǎn)P的橫坐標(biāo)的取值范圍.
(2)已知正方形ABCD的邊長為4,中心為原點(diǎn),正方形各邊都與坐標(biāo)軸垂直.若正方形各邊上的點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),求圓的半徑的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com