【題目】如圖,⊙O半徑為1,AB是⊙O的直徑,C是⊙O上一點,連接AC,⊙O外的一點D在直線AB上,若AC=,OB=BD.
(1)求證:CD是⊙O的切線;
(2)求陰影部分的面積.(結(jié)果保留π)
【答案】(1)見解析;(2) .
【解析】
(1)連接OC,則得出∠COD=2∠CAO=2∠D=60°,可求得∠OCD=90°,可得出結(jié)論;
(2)可利用△OCD的面積扇形BOC的面積求得陰影部分的面積.
(1)連接OC,CB,則∠COD=2∠CAD,
∵⊙O半徑為1,AC=,
∴AB=2,BC=1,
∴∠CAD=30°,
∴∠COD=60°,
∵OB=BD,
∴BC=BD=OB=1,
∴∠CBO=60°,
∴∠DCB=∠BDC=30°,
∴∠OCD=180°﹣60°﹣30°=90°,
∴OC⊥CD,
即CD是⊙O的切線;
(2)在Rt△OCD中,OC=1,OD=2,由勾股定理可求得CD=,
所以S△OCD=OCCD=×1×=,
因為∠COD=60°,
所以S扇形COB=,
所以S陰影=S△OCD﹣S扇形COB=﹣.
科目:初中數(shù)學 來源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長是關(guān)于x的方程x2-mx+-=0的兩個實數(shù)根.
(1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么□ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知正方形的面積為,點在函數(shù)的圖象上,點是函數(shù)的圖象上動點,過點分別作軸、軸的垂線,垂足分別為、,若設(shè)矩形和正方形不重合的兩部分的面積和為.
求點坐標和的值;
寫出關(guān)于的函數(shù)關(guān)系和的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 4 4 的正方形網(wǎng)格中,有 5 個黑色小正方形.
(1)請你移動一個黑色小正方形,使移動后所形成的4 4 的正方形網(wǎng)格圖形是軸對稱圖形.如:將 8 號小正方形移至 14 號;你的另一種做法是將 號小正方形移至 號(填寫標號即可);
(2)請你移動 2 個小正方形,使移動后所形成的圖形是軸對稱圖形.你的一種做法是將 號小正方形移至 號、將 號小正方形移至 號(填寫標號即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O在線段AB上,(不與端點A、B重合),以點O為圓心,OA的長為半徑畫弧,線段BP與這條弧相切與點P,直線CD垂直平分PB,交PB于點C,交AB于點D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。
(1)求證:OP∥ED;
(2)當∠ABP=30°時,求扇形AOP的面積,并證明四邊形PDBE是菱形;
(3)過點O作OF⊥DE于點F,如圖所示,線段EF的長度是否隨r的變化而變化?若不變,直接寫出EF的值;若變化,直接寫出EF與r的關(guān)系。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, , ,以點為頂點、為腰在第三象限作等腰.
()求點的坐標.
()如圖, 為軸負半軸上一個動點,當點沿軸負半軸向下運動時,以為頂點, 為腰作等腰,過作軸于點,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)畫出△ABC和△A1B1C1關(guān)于原點O對稱,畫出△A1B1C1,并寫出△A1B1C1的各頂點的坐標;
(2)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到的△A2B2C2,畫出△A2B2C2,并寫出△A2B2C2的各頂點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com