【題目】如圖,⊙O半徑為1,AB是⊙O的直徑,C是⊙O上一點,連接AC,⊙O外的一點D在直線AB上,若AC=,OB=BD.

(1)求證:CD是⊙O的切線;

(2)求陰影部分的面積.(結(jié)果保留π)

【答案】(1)見解析;(2)

【解析】

(1)連接OC,則得出∠COD=2CAO=2D=60°,可求得∠OCD=90°,可得出結(jié)論;

(2)可利用OCD的面積扇形BOC的面積求得陰影部分的面積.

(1)連接OC,CB,則∠COD=2CAD,

∵⊙O半徑為1,AC=,

AB=2,BC=1,

∴∠CAD=30°,

∴∠COD=60°,

OB=BD,

BC=BD=OB=1,

∴∠CBO=60°,

∴∠DCB=BDC=30°,

∴∠OCD=180°﹣60°﹣30°=90°,

OCCD,

CD是⊙O的切線;

(2)在RtOCD中,OC=1,OD=2,由勾股定理可求得CD=,

所以SOCD=OCCD=×1×=

因為∠COD=60°,

所以S扇形COB=

所以S陰影=SOCD﹣S扇形COB=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的外接圓,,是劣弧上的點(不與點、重合),延長

求證:的延長線平分;

邊上的高為,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD的兩邊ABAD的長是關(guān)于x的方程x2mx0的兩個實數(shù)根.

(1)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知正方形的面積為,點在函數(shù)的圖象上,點是函數(shù)的圖象上動點,過點分別作軸、軸的垂線,垂足分別為、,若設(shè)矩形和正方形不重合的兩部分的面積和為

點坐標和的值;

寫出關(guān)于的函數(shù)關(guān)系和的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 4 4 的正方形網(wǎng)格中,有 5 個黑色小正方形.

1)請你移動一個黑色小正方形,使移動后所形成的4 4 的正方形網(wǎng)格圖形是軸對稱圖形.如:將 8 號小正方形移至 14 號;你的另一種做法是將 號小正方形移至 號(填寫標號即可);

2)請你移動 2 個小正方形,使移動后所形成的圖形是軸對稱圖形.你的一種做法是將 號小正方形移至 號、將 號小正方形移至 號(填寫標號即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O在線段AB上,(不與端點A、B重合),以點O為圓心,OA的長為半徑畫弧,線段BP與這條弧相切與點P,直線CD垂直平分PB,交PB于點C,交AB于點D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。

(1)求證:OPED;

(2)當∠ABP=30°時,求扇形AOP的面積,并證明四邊形PDBE是菱形;

(3)過點OOFDE于點F,如圖所示,線段EF的長度是否隨r的變化而變化?若不變,直接寫出EF的值;若變化,直接寫出EFr的關(guān)系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),

(1)求圍欄的長和寬;

(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, ,以點為頂點、為腰在第三象限作等腰

)求點的坐標.

)如圖 軸負半軸上一個動點,當點沿軸負半軸向下運動時,以為頂點, 為腰作等腰,過軸于點,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)畫出△ABC和△A1B1C1關(guān)于原點O對稱,畫出△A1B1C1,并寫出△A1B1C1的各頂點的坐標;

(2)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到的△A2B2C2,畫出△A2B2C2,并寫出△A2B2C2的各頂點的坐標.

查看答案和解析>>

同步練習冊答案