【題目】下面的統(tǒng)計(jì)圖反映了我國郵電業(yè)務(wù)(含郵政業(yè)務(wù)與電信業(yè)務(wù))總量的情況.
(以上數(shù)據(jù)來源于國家統(tǒng)計(jì)局)
根據(jù)統(tǒng)計(jì)圖提供的信息,下列有關(guān)我國郵電業(yè)務(wù)總量推斷不合理的是( )
A. 2018年,電信業(yè)務(wù)總量比郵政業(yè)務(wù)總量的5倍還多
B. 2011—2018年,郵政業(yè)務(wù)總量與電信業(yè)務(wù)總量都是逐年增長的
C. 與2017年相比,2018年郵政業(yè)務(wù)總量的增長率超過20%
D. 2011—2018年,電信業(yè)務(wù)總量年增長的平均值大于郵政業(yè)務(wù)總量年增長的平均值
【答案】B
【解析】
利用折線統(tǒng)計(jì)圖結(jié)合相應(yīng)數(shù)據(jù),分別分析得出符合題意的答案.
A、∵65557÷12345≈5.31,
∴2018年,電信業(yè)務(wù)總量比郵政業(yè)務(wù)總量的5倍還多,說法正確;
B、由折線統(tǒng)計(jì)圖可得:2011—2018年,郵政業(yè)務(wù)總量是逐年增長的,而電信業(yè)務(wù)總量在2015-2016年是下降的,故此選項(xiàng)錯(cuò)誤,符合題意;
C、∵(12345-9764)÷9764≈0.264=26.4%,
∴與2017年相比,2018年郵政業(yè)務(wù)總量的增長率超過20%,推斷正確;
D、∵電信業(yè)務(wù)總量年增長的平均值==23777.5 億元,
郵政業(yè)務(wù)總量年增長的平均值==5581.375億元,
∴ 2011—2018年,電信業(yè)務(wù)總量年增長的平均值大于郵政業(yè)務(wù)總量年增長的平均值,推斷正確.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通訊公司推出了移動(dòng)電話的兩種計(jì)費(fèi)方式(詳情見下表). 設(shè)一個(gè)月內(nèi)使用移動(dòng)電話主叫的時(shí)間為t分鐘
月使用費(fèi) | 主叫限定時(shí)間 | 主叫超時(shí)費(fèi) | 被叫 | |
方式一 | 58元 | 150分鐘 | 0.25元/分 | 免費(fèi) |
方式二 | 88元 | 350分鐘 | 0.19元/分 | 免費(fèi) |
(t為正整數(shù)),請(qǐng)根據(jù)表中提供的信息回答下列問題:
(1)方式一中,當(dāng)t超過150分鐘時(shí),該月費(fèi)用表示為: 元(用含t的代數(shù)式表示);方式二中,當(dāng)t超過350分鐘時(shí),該月費(fèi)用表示為: 元(用含t的代數(shù)式表示).
(2)當(dāng)t=300時(shí),哪種計(jì)費(fèi)方式的費(fèi)用較?請(qǐng)作出判斷,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知,二次函數(shù)y=﹣x2+bx+c的圖象與x軸的兩個(gè)交點(diǎn)A,B的橫坐標(biāo)分別為1和2,與y軸的交點(diǎn)是C.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)若點(diǎn)D是y軸上的一點(diǎn),是否存在D,使以B,C,D為頂點(diǎn)的三角形與△ABC相似?若存在,求點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)過點(diǎn)C作CE∥x軸,與二次函數(shù)y=﹣x2+bx+c的圖象相交于點(diǎn)E,點(diǎn)H是該二次函數(shù)圖象上的動(dòng)點(diǎn),過點(diǎn)H作HF∥y軸,交線段BC于點(diǎn)F,試探究當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),△CHF與△HFE的面積之和最大,求點(diǎn)H的坐標(biāo)及最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少4000元.每天工作8小時(shí),一個(gè)月工作25天.月工資底薪1000元,另加計(jì)件工資.加工1件A型服裝計(jì)酬20元,加工1件B型服裝計(jì)酬15元.在工作中發(fā)現(xiàn)一名熟練工加工2件A型服裝和3件B型服裝需7小時(shí),加工1件A型服裝和2件B型服裝需4小時(shí).(工人月工資=底薪+計(jì)件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時(shí)?
(2)一段時(shí)間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號(hào)的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請(qǐng)你運(yùn)用所學(xué)知識(shí)判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)騎自行車從A地出發(fā)沿同一條路前往B地,他們離A地的距離s(km)與甲離開A地的時(shí)間t(h)之間的函數(shù)關(guān)系的圖象如圖所示,根據(jù)圖象提供的信息,有下列說法:①甲、乙同學(xué)都騎行了18km;②甲、乙同學(xué)同時(shí)到達(dá)B地;③甲停留前、后的騎行速度相同;④乙的騎行速度是;其中正確的說法是( )
A. ①③B. ①④C. ②④D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論
①abc>0;
②4a+b=0;
③9a+c>3b;
④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大,其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)運(yùn)算:
(1)﹣13+28+62﹣77
(2)4﹣4+(﹣3)×(﹣)
(3)﹣12006+[1﹣(2﹣22)×3]+(﹣1)2016
(4)(﹣6)×(﹣)×(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,下圖①為點(diǎn)P,Q的“相關(guān)矩形”的示意圖.
已知點(diǎn)A的坐標(biāo)為(1,0),
(1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
(2)點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒有公共點(diǎn)時(shí),求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)n位自然數(shù)能被x0整除,依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+1整除,再依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+2整除,按此規(guī)律輪換后, 能被x0+3整除,…, 能被x0+n﹣1整除,則稱這個(gè)n位數(shù)是x0的一個(gè)“輪換數(shù)”.
例如:60能被5整除,06能被6整除,則稱兩位數(shù)60是5的一個(gè)“輪換數(shù)”;
再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數(shù)324是2的一個(gè)“輪換數(shù)”.
(1)若一個(gè)兩位自然數(shù)的個(gè)位數(shù)字是十位數(shù)字的2倍,求證這個(gè)兩位自然數(shù)一定是“輪換數(shù)”.
(2)若三位自然數(shù)是3的一個(gè)“輪換數(shù)”,其中a=2,求這個(gè)三位自然數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com