【題目】如圖,在一旗桿AB的頂端A上系一活動旗幟,在某一時刻,旗桿的影子落在平地BD和一坡度為1:的斜坡DF上,拉動旗幟使其影子正好落在斜坡頂點D處,若測得旗高BC=8m,影長BD=16m,影長DE=12m,(假設(shè)旗桿AB與地面垂直,B、D、G三點共線,AB、BG、DF在同一平面內(nèi)).
(1)求坡角∠FDG的度數(shù);
(2)求旗桿AB的高度.(注:≈1.73,結(jié)果精確到0.1m)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展了“手機伴我健康行”主題活動.他們隨機抽取部分學(xué)生進行“手機使用目的”和“每周使用手機時間”的問卷調(diào)查,并繪制成如圖①②的統(tǒng)計圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是_______________。
(2)補全條形統(tǒng)計圖
(3)該校共有學(xué)生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,AE∥BD交CB的延長線于點E.若∠E=35°,則∠BAC的度數(shù)為( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按照此做法進行下去,點A8的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.
(1)求拋物線的函數(shù)表達式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;
②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P(a,b),若點P1的坐標為(a+kb,ka+b)(其中k為常數(shù),且k≠0),則稱點P1為點P的“k屬派生點”.
例如,P(1,4)的“2屬派生點”為P1(1+2×4,2×1+4),即P1(9,6).
(1)點(﹣2,3)的“3屬派生點”P1的坐標為 (直接填空)
(2)若點P的“5屬派生點”P1的坐標為(3,﹣9),則點P坐標為 (直接填空);
(3)若x軸正半軸上一點P(a,0)的“k屬派生點”為P1,且線段PP1的長度為線段OP長度的2倍,則k= (直接填空);
(4)在(3)的條件下,若點M在y軸上,連接MP、MP1,使MP1平分∠PMO,請直接寫出點M的縱坐標(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN 交 AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com