【題目】如圖,在一旗桿AB的頂端A上系一活動旗幟,在某一時刻,旗桿的影子落在平地BD和一坡度為1:的斜坡DF上,拉動旗幟使其影子正好落在斜坡頂點D處,若測得旗高BC=8m,影長BD=16m,影長DE=12m,(假設(shè)旗桿AB與地面垂直,B、D、G三點共線,AB、BG、DF在同一平面內(nèi)).

(1)求坡角∠FDG的度數(shù);

(2)求旗桿AB的高度.(注:≈1.73,結(jié)果精確到0.1m)

【答案】(1)FDG=30°;(2)旗桿AB的高度約為19.2m.

【解析】

(1)作EHDGH,根據(jù)坡度為1,可得∠FDG=30°;

(2)求出BG的值,根據(jù)BC=8m,影長BD=16m,可求得AB的值.

解:(1)作EHDGH

tanFDG=

∴∠FDG=30°

2)延長AEBG于點M,

∵∠FDG=30°,DE=12m,

又∵BC=8m,影長BD=16m,

HM=2EH=12m,

答:旗桿AB的高度約為19.2m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展了手機伴我健康行主題活動.他們隨機抽取部分學(xué)生進行手機使用目的每周使用手機時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的圓心角度數(shù)是_______________

2)補全條形統(tǒng)計圖

3)該校共有學(xué)生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BD平分∠ABCAC于點D,AE∥BDCB的延長線于點E.若∠E=35°,則∠BAC的度數(shù)為( )

A. 40° B. 45° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰Rt△ABCBAC=90°,EAC上(且不與點A、C重合.在ABC的外部作等腰Rt△CED使CED=90°,連接AD,分別以ABAD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE求證AF=AE;

3如圖3CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形CEDABC的下方時,AB=2CE=2,求線段AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,點A1坐標為(1,0),過點A1x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按照此做法進行下去,點A8的坐標為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過AC兩點,與AB邊交于點D

1)求拋物線的函數(shù)表達式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m△CPQ的面積為S

S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;

S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標系xOy中的點Pab),若點P1的坐標為(a+kb,ka+b)(其中k為常數(shù),且k≠0),則稱點P1為點P“k屬派生點

例如,P14)的“2屬派生點P11+2×4,2×1+4),即P19,6).

1)點(﹣23)的“3屬派生點”P1的坐標為   (直接填空)

2)若點P“5屬派生點”P1的坐標為(3,﹣9),則點P坐標為   (直接填空);

3)若x軸正半軸上一點Pa,0)的“k屬派生點P1,且線段PP1的長度為線段OP長度的2倍,則k   (直接填空);

4)在(3)的條件下,若點My軸上,連接MPMP1,使MP1平分∠PMO,請直接寫出點M的縱坐標(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知四邊形為矩形,的角平分線交直線于點,若,,則的長為_______

查看答案和解析>>

同步練習(xí)冊答案