【題目】如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.

(1)求證:AP是⊙O的切線;

(2)求PD的長.

【答案】(1)證明見解析(2)

【解析】

試題分析:(1)連接OA,利用等腰三角形的性質(zhì)和角的關(guān)系求出OAP=90°,得出OAAP即可;(2)連接AD,ACD中利用tan30°求出AD=,然后證明P=PAD得出PD=AD=

試題解析:(1)連接OA

∵∠B=60°,

∴∠AOC=2B=120°,

OA=OC,

∴∠ACP=CAO=30°,

∴∠AOP=60°,

AP=AC,

∴∠P=ACP=30°,

∴∠OAP=90°,

OAAP,

APO的切線,

(2)連接AD

CDO的直徑,

∴∠CAD=90°,

AD=AC×tan30°=3×=,

∵∠ADC=B=60°,

∴∠PAD=ADCP=60°﹣30°,

∴∠P=PAD,

PD=AD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題:在三角形中,至多有一個內(nèi)角是直角,正確的假設(shè)是(

A.在三角形中,至少有一個內(nèi)角是直角B.在三角形中,至少有兩個內(nèi)角是直角

C.在三角形中,沒有一個內(nèi)角是直角D.在三角形中,至多有兩個內(nèi)角是直角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=2,ab=1,則a2 + b2__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m.n]上的“閉函數(shù)”.如函數(shù),當(dāng)x=1時,y=3;當(dāng)x=3時,y=1,即當(dāng)時,有,所以說函數(shù)是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2016]上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)若二次函數(shù)y=是閉區(qū)間[1,2]上的“閉函數(shù)”,求k的值;

(3)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的表達(dá)式(用含m,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個單項式加上-y2+x2后等于x2+y2,則這個單項式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,折疊矩形的一邊AD,使點D落在BC邊的點F處,已知AB=8cm,BC=10cm,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為平行四邊形,,的延長線于點,交點.

(1)求證:;

(2),,,求的長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由線段a,b,c可以組成直角三角形的是( 。

A.a5,b8,c7B.a2,b3,c4

C.a24,b7,c25D.a5,b5,c6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的口袋中,有五個分別標(biāo)有數(shù)字-3,-2,-1,1,3的完全相同的小球,現(xiàn)從口袋中任取一個小球,將該小球上的數(shù)字記為m,把數(shù)字m1記為n代入關(guān)于x的一元一次不等式中,則此一元一次不等式中,則此一元一次不等式有正整數(shù)解得概率是 。

查看答案和解析>>

同步練習(xí)冊答案