【題目】如圖,點(diǎn)P為△ABC三邊垂直平分線的交點(diǎn),∠PAC=20°,∠PCB=30°,
(1)求∠PAB的度數(shù);
(2)直接寫出∠APB與∠ACB的數(shù)量關(guān)系 .
【答案】(1)∠PAB=40°;(2)∠APB=2∠ACB.
【解析】
(1)由P為△ABC三邊垂直平分線的交點(diǎn),推出PA=PC=PB,由等腰三角形的性質(zhì)證得∠PAC=∠PCA=20°,∠PBC=∠PCN=30°,由∠PAB=∠PBA,根據(jù)三角形的內(nèi)角和即可推出結(jié)論;
(2)分別計(jì)算兩角的大小,從而得出兩角的數(shù)量關(guān)系.
(1)∵P為△ABC三邊垂直平分線的交點(diǎn),
∴PA=PC=PB,
∴∠PAC=∠PCA=20°,
∠PBC=∠PCN=30°,
∵∠PAB=∠PBA,
∴∠PAB=(180°﹣2×20°﹣2×30°)=40°.
(2)∵∠APB=180°﹣40°﹣40°=100°,∠ACB=∠ACP+∠PCB=50°,
∴∠APB=2∠ACB.
故答案為∠APB=2∠ACB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).當(dāng)豎直擺放圓柱形桶至少________個時,網(wǎng)球可以落入桶內(nèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC角平分線的交點(diǎn),過點(diǎn)O作MN∥BC分別與AB,AC相交于點(diǎn)M,N,若,,,則△AMN的周長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),與坐標(biāo)原點(diǎn)O在同一直線上,且AO=BO,其中m,n滿足.
(1)求點(diǎn)A,B的坐標(biāo);
(2)如圖1,若點(diǎn)M,P分別是x軸正半軸和y軸正半軸上的點(diǎn),點(diǎn)P的縱坐標(biāo)不等于2,點(diǎn)N在第一象限內(nèi),且,PA⊥PN,,求證:BM⊥MN;
(3)如圖2,作AC⊥y軸于點(diǎn)C,AD⊥x軸于點(diǎn)D,在CA延長線上取一點(diǎn)E,使,連結(jié)BE交AD于點(diǎn)F,恰好有,點(diǎn)G是CB上一點(diǎn),且,連結(jié)FG,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°.
(1)在斜邊AB上確定一點(diǎn)E,使點(diǎn)E到點(diǎn)B距離和點(diǎn)E到AC的距離相等;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)在(1)的條件下,若BC=6,AC=8,點(diǎn)E到AC的距離為ED,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的表達(dá)式.
(2)當(dāng)氣體體積為1 m3時,氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時,氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象如圖所示,對稱軸為,給出下列結(jié)論:①;②;③;④,其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),若一個點(diǎn)到一條直線的距離不大于1,則稱這個點(diǎn)是該直線的“伴侶點(diǎn)”.
在平面直角坐標(biāo)系中,已知點(diǎn)M(1,0),過點(diǎn)M作直線l平行于y軸,點(diǎn)A(﹣1,a),點(diǎn)B(b,2a),點(diǎn) C(﹣,a﹣1),將三角形ABC進(jìn)行平移,平移后點(diǎn)A的對應(yīng)點(diǎn)為D,點(diǎn)B的對應(yīng)點(diǎn)為E,點(diǎn)C的對應(yīng)點(diǎn)為F.
(1)試判斷點(diǎn)A是否是直線l的“伴侶點(diǎn)”?請說明理由;
(2)若點(diǎn)F剛好落在直線l上,F的縱坐標(biāo)為a+b,點(diǎn)E落在x軸上,且三角形MFD的面積為,試判斷點(diǎn)B是否是直線l的“伴侶點(diǎn)”?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com