【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2:(<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)當(dāng)△BDM為直角三角形時(shí),求的值.
(3)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
【答案】(1)A(-1,0),B(3,0);(2)-;(3)P(,-);.
【解析】
試題分析: (1)將y=mx2-2mx-3m化為交點(diǎn)式,即可得到A、B兩點(diǎn)的坐標(biāo);
(2)先表示出DM2,BD2,MB2,再利用DM2+MB2=BD2,即可求得m的值;
(3)先用待定系數(shù)法得到拋物線C1的解析式,過(guò)點(diǎn)P作PQ∥y軸,交BC于Q,用待定系數(shù)法得到直線BC的解析式,再根據(jù)三角形的面積公式和配方法得到△PBC面積的最大值.
試題解析:(1)由題意可得:y=mx2-2mx-3m=m(x-3)(x+1),
∵m≠0,
∴當(dāng)y=0時(shí),0=m(x-3)(x+1),
解得:x1=-1,x2=3,
∴A(-1,0),B(3,0);
(2)如圖1,
∵y=mx2-2mx-3m=m(x-1)2-4m,
∴頂點(diǎn)M坐標(biāo)(1,-4m),
當(dāng)x=0時(shí),y=-3m,
∴D(0,-3m),B(3,0),
∴DM2=(0-1)2+(-3m+4m)2=m2+1,
MB2=(3-1)2+(0+4m)2=16m2+4,
BD2=(3-0)2+(0+3m)2=9m2+9,
當(dāng)△BDM為Rt△,∠M為直角的直角三角形時(shí),有:DM2+MB2=BD2.
DM2+MB2=BD2時(shí)有:m2+1+16m2+4=9m2+9,
解得m=-(m=舍去).
故m=-時(shí),△BDM為以∠M為直角的直角三角形;
(3)設(shè)C1:y=ax2+bx+c,將A、B、C三點(diǎn)的坐標(biāo)代入得:
, 解得,
故C1:y=x2-x-.
如圖2:過(guò)點(diǎn)P作PQ∥y軸,交BC于Q,
由B、C的坐標(biāo)可得直線BC的解析式為:y=x-,
設(shè)P(x,x2-x-),則Q(x,x-),
PQ=x--(x2-x-)=-x2+x,
S△PBC=S△PCQ+S△PBQ=PQOB=×(-x2+x)×3=-(x-)2+,
當(dāng)x=時(shí),S△PBC有最大值,Smax=,
則×()2--=-,
故P(,-).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形的兩邊分別為3和6,則這個(gè)三角形的周長(zhǎng)是 ( )
A. 12 B.15 C.9 D.12或15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)m是關(guān)于x的方程x2-3x-1=0的一根,則代數(shù)式m2-3m +5值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長(zhǎng)為2015個(gè)單位長(zhǎng)度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A—B—C-D—A一B一…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的一元二次方程(k﹣1)x2﹣2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,那么k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)二次函數(shù)的二次項(xiàng)系數(shù)為-1,且圖象的頂點(diǎn)坐標(biāo)為(0,-3).則這個(gè)二次函數(shù)的表達(dá)式為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com